Contents

1 Application of Plasma Technology for Remediating Environment—An Introduction 1
 1.1 Introduction .. 1
 1.2 Plasma Generation and Application 1
 1.3 Plasma Technology in Environmental Protection 2
References .. 4

2 Remediation of Phenanthrene-Contaminated Soil Using Non-thermal Plasma Fluidized Bed 7
 2.1 Introduction .. 7
 2.2 Experimental Section 8
 2.2.1 Experimental Setup 8
 2.2.2 Materials and Analyses 9
 2.3 Results and Discussions 11
 2.3.1 Effect of the Solid Bed Location 11
 2.3.2 Effect of the Input Energy Density 12
 2.3.3 Effect of the Flow Rate of the Carrier Gas 13
 2.3.4 Effect of the Soil Moisture Content 14
 2.3.5 Role of Active Species 16
 2.3.6 TOC Analysis 17
 2.3.7 Proposed Pathway of the PHE Degradation 17
 2.4 Conclusions .. 19
References .. 19

3 Degradation and Discoloration of Textile Dyes Using Gliding Arc Plasma Combined with Fenton Catalysis 21
 3.1 Introduction .. 21
 3.2 Experimental Section 22
 3.2.1 Plasma Apparatus 22
 3.2.2 Materials and Analytical Methods 23
3.3 Results and Discussions ... 24
 3.3.1 Plasma Discoloration and Degradation of Single Dye 24
 3.3.2 Treatment Results of Mixed Dye Wastewater 27
 3.3.3 Discoloration and Degradation in the Presence
 of Zerovalent Iron (ZVI) 28
 3.3.4 Comparison of Different Research Studies
 and Their Major Results 37
3.4 Conclusions ... 37
References .. 38

4 Reduction and Removal of Cr(VI) from Aqueous Solution
 by Microplasma .. 41
 4.1 Introduction .. 41
 4.2 Experimental Details 43
 4.2.1 Discharge Apparatus and Materials 43
 4.2.2 Analyses 44
 4.3 Results .. 44
 4.3.1 Effect of Gas Flow Rate on Cr(VI) Reduction 44
 4.3.2 Effect of Initial pH on Cr(VI) Reduction 45
 4.3.3 Effect of Stirring on Cr(VI) Reduction 46
 4.3.4 Effect of Initial Cr(VI) Concentration on Cr(VI)
 Reduction .. 46
 4.3.5 Effect of Various Discharge Gas on Cr(VI) Reduction ... 46
 4.3.6 Effect of Input Power on Cr(VI) Reduction 47
 4.3.7 Effect of Ethanol on Cr(VI) Reduction and Removal .. 48
 4.3.8 Effect of Initial PH on the Removal of Cr(VI)
 in the Presence of Ethanol 49
 4.3.9 Characterization of the Sediment 50
 4.4 Discussion ... 52
 4.5 Conclusions .. 56
References .. 57

5 Surface Sterilization by Atmospheric Pressure Non-thermal
 Plasma ... 61
 5.1 Introduction .. 61
 5.2 Experimental Section 62
 5.3 Results and Discussions 64
 5.3.1 Destruction of Bacteria by Atmospheric Pressure
 Non-Thermal Plasma 64
 5.3.2 Influence of Air Flow Rate on the Sterilization
 Efficiency ... 65
 5.3.3 Influence of Gap Distance Between Agar Surfaces
 and Electrodes on the Sterilization Efficiency 66
 5.3.4 Temperature Variations of Surface Sterilization
 Efficiency Under Different Contact Distances 67
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.5 Influence of the Total Number of Bacteria in the Surface on the Sterilization Efficiency</td>
<td>68</td>
</tr>
<tr>
<td>5.3.6 Scanning Electron Microscopic Photomicrographs of E. Coli in the Treatment</td>
<td>69</td>
</tr>
<tr>
<td>5.3.7 Mechanism of Bacteria Inactivation by Non-thermal Plasma</td>
<td>70</td>
</tr>
<tr>
<td>5.4 Conclusions</td>
<td>71</td>
</tr>
<tr>
<td>References</td>
<td>71</td>
</tr>
<tr>
<td>6 Removal of Volatile Organic Compounds Using Plasma</td>
<td>75</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>75</td>
</tr>
<tr>
<td>6.2 Removal of Volatile Organic Compounds Using Plasma</td>
<td>76</td>
</tr>
<tr>
<td>6.2.1 Experimental Section</td>
<td>76</td>
</tr>
<tr>
<td>6.2.2 Results</td>
<td>77</td>
</tr>
<tr>
<td>6.3 Removal of Volatile Organic Compounds Using Plasma</td>
<td>78</td>
</tr>
<tr>
<td>6.3.1 Experimental Section</td>
<td>78</td>
</tr>
<tr>
<td>6.3.2 Results</td>
<td>78</td>
</tr>
<tr>
<td>Reference</td>
<td>79</td>
</tr>
</tbody>
</table>
Plasma Remediation Technology for Environmental Protection
Du, C.; Yan, J.
2017, XI, 79 p. 50 illus., 19 illus. in color., Hardcover