Contents

1 Introduction ... 1
1.1 Background .. 1
1.2 Scope ... 2

Part I Projectile Impact

2 Projectile Impact Phenomena and Existing Studies 9
2.1 Local Response of Concrete Targets Under Projectile Impact ... 9
2.2 Empirical Models .. 11
2.2.1 Modified Petry Formula
(Petry 1910; Samuely 1939) .. 11
2.2.2 Ballistic Research Laboratory (BRL) Formula
(Beth 1941; Chelapati et al. 1972; Gwaltney 1968;
Adeli and Amin 1985). .. 12
2.2.3 Army Corps of Engineers (ACE) Formula
(ACE 1946; Chelapati et al. 1972) 12
2.2.4 Modified National Defense Research Committee
(NDRC) Formula (NDRC 1946; Kennedy 1966) 13
2.2.5 Ammann and Whitney Formula (Kennedy 1976;
Ben-Dor 2013) ... 13
2.2.6 Whiffen Formula (Whiffen 1943) 14
2.2.7 Kar Formula (Kar 1978) 14
2.2.8 CEA-EDF Perforation Formula (Berriaud 1978) ... 14
2.2.9 UK Atomic Energy Authority (UKAEA) Formula
(Barr 1990). ... 15
2.2.10 Bechtel Formula (BPC 1974; Rotz 1976; Sliter 1980;
Bangash 1993). .. 16
2.2.11 Stone and Webster Formula
(Sliter 1980; Jankov et al. 1976). 16
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.12</td>
<td>Degen Perforation Formula (Degen 1980)</td>
<td>17</td>
</tr>
<tr>
<td>2.2.13</td>
<td>Chang Formula (Chang 1981)</td>
<td>17</td>
</tr>
<tr>
<td>2.2.14</td>
<td>Haldar–Hamieh Formula (Haldar and Hamieh 1984)</td>
<td>17</td>
</tr>
<tr>
<td>2.2.15</td>
<td>Adeli–Amin Formula (Adeli and Amin 1985)</td>
<td>18</td>
</tr>
<tr>
<td>2.2.16</td>
<td>Hughes Formula (Hughes 1984)</td>
<td>18</td>
</tr>
<tr>
<td>2.2.17</td>
<td>Healey and Weissman Formula (Bangash 1989)</td>
<td>18</td>
</tr>
<tr>
<td>2.2.18</td>
<td>IRS Formula (Bangash 1993)</td>
<td>19</td>
</tr>
<tr>
<td>2.2.19</td>
<td>CRIEPI Formula (Kojima 1991)</td>
<td>19</td>
</tr>
<tr>
<td>2.2.20</td>
<td>TM 5-855-1 Formula (TM 5-855-1 1986)</td>
<td>19</td>
</tr>
<tr>
<td>2.2.21</td>
<td>UMIST Formula (Reid and Wen 2001; BNFL 2003; Li et al. 2005)</td>
<td>20</td>
</tr>
<tr>
<td>2.2.22</td>
<td>Wen Formula</td>
<td>21</td>
</tr>
<tr>
<td>2.2.23</td>
<td>Berezan Formula (Sagomonyan 1974)</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>Semi-analytical Models</td>
<td>23</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Penetration</td>
<td>23</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Perforation</td>
<td>26</td>
</tr>
<tr>
<td>2.4</td>
<td>Numerical Simulation</td>
<td>27</td>
</tr>
<tr>
<td>2.5</td>
<td>Summary</td>
<td>31</td>
</tr>
</tbody>
</table>

3 Rigid Projectile Penetration | 33

3.1 Introduction | 33
3.2 Classical Cavity Expansion Models | 35
3.3 Extended Cavity Expansion Model | 36
3.3.1 Solution of the Extended Cavity Expansion Model | 36
3.3.2 One-Dimensional Resistance Function of Concrete Targets | 45
3.3.3 Analysis and Discussion | 48
3.4 Unified Deep Penetration Model | 51
3.4.1 Mean Resistance | 53
3.4.2 DOP | 55
3.4.3 Validation | 58
3.5 Perforation Model of Thick Concrete Slabs | 59
3.5.1 Three-Stage Perforation Model | 60
3.5.2 Height of Rear Crater | 60
3.5.3 Perforation Limit and Ballistic Limit | 61
3.5.4 Residual Velocity | 62
3.5.5 Validation | 62
3.6 Perforation Model of Thin Concrete Slabs | 64
3.6.1 Perforation Test | 65
3.6.2 Perforation Model of Thin Concrete Slabs | 69
3.6.3 Validation | 75
3.7 Unified Perforation Model of Thick and Thin Concrete Slabs | 77
3.8 Deceleration-Time History

- **3.8.1 Projectile Impact Test** .. 82
- **3.8.2 Accuracy Analysis of Measured Deceleration-Time Histories** .. 85
- **3.8.3 Derivation of Rigid-Body Deceleration-Time Histories** .. 94
- **3.8.4 Predictions of Deceleration-Time Histories** 97

3.9 Summary .. 105

4 Mass Abrasive Projectile Penetration

- **4.1 Introduction** .. 107
- **4.2 Mass Abrasion Analysis** .. 108
 - **4.2.1 Mass Loss Coefficient** .. 110
 - **4.2.2 Nose-Blunting Coefficient** .. 114
 - **4.2.3 Prediction of Mass Loss in All Striking Velocity Range** .. 116
 - **4.2.4 Validation of Mass Loss Coefficient** .. 121
 - **4.2.5 Validation of Nose-Blunting Coefficient** .. 123
- **4.3 Structural Stability Analysis** .. 126
 - **4.3.1 Drag Forces** .. 127
 - **4.3.2 Limit Striking Velocity** .. 131
 - **4.3.3 Normal Penetration** .. 134
 - **4.3.4 Oblique Penetration** .. 138
 - **4.3.5 Penetration with Attacking Angle and Asymmetrical Abrasion** .. 142
 - **4.3.6 Validation** .. 145
- **4.4 Stability Analyses of Terminal Ballistic Trajectory** .. 148
 - **4.4.1 Drag Forces** .. 150
 - **4.4.2 Free-Surface Effect** .. 152
 - **4.4.3 Mass Abrasion Model of Projectiles** .. 154
 - **4.4.4 Prediction of Terminal Ballistic Trajectory** .. 155
 - **4.4.5 Verifications of PENTRA2D** .. 158
 - **4.4.6 Parametric Influential Analyses** .. 161
- **4.5 Summary** .. 162

5 Eroding Projectile and Shaped Charge Jet Penetrations

- **5.1 Introduction** .. 165
- **5.2 Eroding Projectile Penetration** .. 167
 - **5.2.1 A Review of the Existing Studies** .. 167
 - **5.2.2 Comparison Between the Existing Models** .. 168
 - **5.2.3 Projectile Penetration Test** .. 172
 - **5.2.4 Penetration Models** .. 182
- **5.3 Shaped Charge (SC) Jet Penetration** .. 188
 - **5.3.1 A Review of the Existing Studies** .. 188
6 Efficient Decoupled Analytical/Numerical Approach of Terminal Ballistic Trajectory

6.1 Introduction .. 211
6.2 Forcing Function 213
6.2.1 Free-Surface Effect 214
6.2.2 Layering Effect 220
6.2.3 Separation and Reattachment Effect 227
6.3 Efficient Decoupled Analytical/Numerical Approach 230
6.3.1 Analytical/Numerical Approach for Deformed Projectiles 231
6.3.2 Analytical Approach for Rigid Projectiles 231
6.4 Validation .. 233
6.4.1 Projectile Penetrations 233
6.4.2 Projectile Perforations 241
6.4.3 Projectile Penetration into Multi-layered Targets 244
6.5 Numerical Examples 248
6.5.1 Perforation of Spaced Concrete Slabs 249
6.5.2 Penetration into Underground Structures 252
6.6 Summary .. 254

7 Numerical Simulation of Projectile Impact on Concrete Targets

7.1 Introduction .. 255
7.2 Material Models in Hydrocodes 256
7.2.1 General Description 256
7.2.2 Frequently Used Concrete Models 257
7.2.3 Calibration of HJC Model Parameters 262
7.2.4 Validation of HJC Model Parameters 266
7.3 Computation of the Effective Strain Rate 271
7.3.1 Different Definitions of the Effective Strain Rate 276
7.3.2 Influence of Material Parameters 279
7.3.3 Verification and Correction 281
7.4 Modified HJC Model 286
7.4.1 Yield Surface 288
7.4.2 Tensile Damage 290
7.4.3 Lode Angle Dependency 292
7.4.4 Strain Rate Effect 295
7.4.5 Numerical Simulation 297
7.4.6 Parametric Analyses 300
7.5 Modified K&C Model 305
7.5.1 Strength Surface Parameters 305
7.5.2 DIF_t .. 307
7.5.3 Relationship Between η and λ 308
7.5.4 Tensile Damage Accumulation 309
7.5.5 Numerical Simulation 314
7.5.6 Parametric Analyses 317
7.6 Summary .. 320

Part II Aircraft Impact

8 Aircraft Impact Force 325
8.1 Introduction .. 325
8.2 Numerical Modeling 326
8.2.1 Commercial A320 Aircraft 327
8.2.2 Ling Ao NPP Containment 335
8.3 Calculating Methods for Aircraft Impact Force. 339
8.3.1 Theoretical Analysis 339
8.3.2 Numerical Simulation 343
8.4 Influence of Containment Radius on Impact Force 346
8.4.1 Theoretical Analysis of Impact Impulse 346
8.4.2 Numerical Simulation of Aircraft Impact Process 347
8.5 Summary .. 350

9 Numerical Simulation of A320 Aircraft Impact on NPP Containments 353
9.1 Introduction .. 353
9.2 Comparison Between the Integral and the Decoupled Impact Simulations 354
9.2.1 Impact Phenomenon Predicted by Missile-Target Interaction Method 354
9.2.2 Damage of the Prestressed NPP Containment 354
9.2.3 Containment Displacement 358
9.3 Parametric Analyses 360
9.3.1 Influence of Impact Position 360
9.3.2 Influence of Impact Velocity 365
9.3.3 Influence of Impact Angle 369
9.3.4 Influence of Containment Wall Thickness 372
9.3.5 Influence of Rebar Ratio 376
9.3.6 Influence of Prestressing Forces in Tendons 380
9.4 Summary .. 384
10 Aircraft Engine Impact on UHP-SFRC Slabs

10.1 Introduction .. 385
10.2 Test Setup .. 387
 10.2.1 Aircraft Engine Model. 387
 10.2.2 UHP-SFRC Slabs 388
 10.2.3 Setup 390
10.3 Test Results .. 392
 10.3.1 Impact Process. 392
 10.3.2 Deformation of Engine Missiles 393
 10.3.3 Damage of UHP-SFRC Slabs 394
 10.3.4 Test Data 396
10.4 Numerical Simulation and Comparison with the Test Data. 398
 10.4.1 Finite Element Model 398
 10.4.2 Material Models 400
 10.4.3 Numerical Simulation of the Experiment 404
 10.4.4 Comparison with Riedel et al.’s Test 410
10.5 Parametric Analyses 416
 10.5.1 Influence of Slab Thickness 416
 10.5.2 Influence of Impact Velocity 416
10.6 Modified Empirical Formula for Residual Velocity of Engine Missiles 419
10.7 Summary .. 423

Part III Protective Materials and Structures

11 UHPCC Targets Under Projectile Impact 427
 11.1 A Review on Projectile Impact Resistance of HSC 429
11.2 Static and Dynamic Properties of UHP-SFRC 433
11.3 Preparation of UHPCC 435
 11.3.1 Compositions 435
 11.3.2 Mixing Procedure 435
11.4 Triaxial Compressive Test of UHP-BASFRC 436
 11.4.1 A Review on Triaxial Compressive Behavior of Concrete ... 436
 11.4.2 Specimens and Test Setup 438
 11.4.3 Test Results and Analyses 439
11.5 UHP-BASFRC Targets Under Ogive-Nosed Projectile Penetration ... 449
 11.5.1 Projectile Penetration Test 449
 11.5.2 Rigid Projectile Penetration Analyses 456
 11.5.3 Mass Abrasive Projectile Penetration Analyses 463
11.6 UHP-BASFRC Targets Under Flat-Nosed Projectile Penetration ... 465
11.6.1 Projectile Penetration Test ... 466
11.6.2 Analysis and Discussion on DOP ... 471
11.7 UHP-CASFRC Targets Under Ogive-Nosed Projectile Penetration ... 477
11.7.1 Static Tests of UHP-SFRC .. 478
11.7.2 Projectile Penetration Test ... 481
11.7.3 Discussion on DOP ... 486
11.7.4 Theoretical Predictions of Mass Loss and DOP 492
11.8 Summary ... 494

12 Concrete Structures Under Projectile Impact 497
12.1 UHP-BASFRC/Fabric Composite Slabs Against Small-Caliber Arms ... 497
12.1.1 Introduction ... 497
12.1.2 Bullet Perforation Test .. 498
12.1.3 Analysis of Terminal Ballistic Parameters 506
12.2 Monolithic and Segmented RC Slabs with a Rear Steel Liner ... 510
12.2.1 Introduction ... 510
12.2.2 Test ... 511
12.2.3 Analysis and Discussion ... 515
12.3 Hard Projectile Impact on Layered SFRHSC Composite Targets .. 527
12.3.1 Introduction ... 527
12.3.2 Projectile Impact Test .. 528
12.3.3 Analysis and Discussion ... 534
12.4 Numerical Modeling of Rock-Rubble Overlays Subjected to Projectile Penetration .. 540
12.4.1 Introduction ... 540
12.4.2 3D Finite Element Model ... 542
12.4.3 Numerical Analysis Approach .. 547
12.4.4 Validation .. 549
12.4.5 Parametric Analysis and Discussion 551
12.5 Summary ... 557

References .. 559
Concrete Structures Under Projectile Impact
Fang, Q.; Wu, H.
2017, XVII, 577 p. 445 illus., 370 illus. in color.,
Hardcover
ISBN: 978-981-10-3619-4