
Chapter 2
Environment-Related Robustness Issues

In practical applications, many environment-related factors may influence the
performance of speaker recognition. There is often no prior knowledge of these
factors in advance, which makes the environment-related robustness issue more
difficulty. In this chapter, three environment-related factors, background noise,
cross channel and multiple-speaker, are summarized and their corresponding
robustness issues are discussed.

2.1 Background Noise

The speech wave recorded in real environments often contains different types of
background noises such as white noise, car noise, music etc. The background noise
has adverse impact on speaker modeling and disturbs the evaluation testing, and so
degrades the performance of speaker recognition system. The research on back-
ground noise robustness generally has four directions: speech enhancement, feature
compensation, robust modeling, and score normalization.

2.1.1 Speech Enhancement

Despite the fact that the conventional and the state-of-the-art speech enhancement
techniques have been gained satisfactory effects, employing signal-level enhance-
ment has shown to be effective in improving speaker recognition in noisy envi-
ronments. In [1], the subtractive noise suppression analysis was presented, and the
spectral subtraction was proposed to suppress stationary noise from speech by
subtracting the spectral noise bias calculated during non-speech activity and
attenuate the residual noise left after subtraction. Since this algorithm resynthesizes
a speech waveform, it can be used as pre-processing to a speaker recognition
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system. In [2], different techniques were used to remove the effect of additive noise
on the vocal source features WOCOR and the vocal track features MFCC. And a
frequency-domain approach was proposed to denoise the residual signal and hence
improve the noise-robustness of WOCOR. However, these methods do not perform
well when noise is nonstationary. RASTA filtering [3] and cepstral mean normal-
ization (CMN) [4] have been used in speaker recognition but they are mainly
intended for convolutive noises. Inspired by auditory perception, computational
auditory scene analysis (CASA) [5] typically segregates speech by producing a
binary time-frequency mask. To deal with noisy speech, Zhao applied CASA
separation and then reconstructed or marginalized corrupted components indicated
by a CASA mask. It was further shown in [6] that these algorithms might either
enhance or degrade the recognition performance depending on the noise type and
the SNR level.

2.1.2 Feature Compensation

There are also algorithms to improve the system robustness in feature domain. In
[7], 12 different short-term spectrum estimation methods were compared for
speaker verification under the additive noise contamination. Experimental results
conducted on the NIST 2002 SRE show that the spectrum estimation method has a
large effect on recognition performance and the stabilized weighted LP (SWLP) and
the minimum variance distortionless response (MVDR) methods can yield
approximately 7 and 8% relative improvements over the standard DFT method in
terms of EER. Lei et al. [8, 9] proposed a vector Taylor series (VTS) based i-vector
model for noise-robust speaker recognition by extracting synthesized clean
i-vectors to be used in the standard system back-end. This approach brought sig-
nificant improvements in accuracy for noisy speech conditions. Martinez et al. [10]
tried to model non-linear distortions in cepstral domain based on a nonlinear noise
model in order to relate clean and noisy cepstral coefficients and help estimate a
“cleaned-up” version of i-vectors. Moreover, to avoid the high computational load
of the i-vector modelling in the proposed noisy environment, a simplified version is
followed, where the sufficient statistics are normalized with their corresponding
utterance-dependent noise adapted UBM.

2.1.3 Robust Modeling

The research on model robustness against noise usually adopts model compensation
algorithms to decrease the mismatch between the test and the training utterances.

The parallel model combination (PMC) was first introduced in speech recog-
nition [11] in advance of speaker recognition [12] by building a noisy model and
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using it to decode noisy test segments. This iterative method compensates additive
and convolutive noises directly at the data level. The main advantages of this
method are to allow the compensation of the noise presenting in both test and
training data, to take into account the variance of the different noises, and to
facilitate the use of delta coefficients.

2.1.4 Score Normalization

A robust back-end training called “multi-style” [13] was proposed as a possible
solution to noise reduction in the score level. This method used a large set of clean
and noisy data (affected with different noises and SNR levels) to build a generic
scoring model. The obtained model gave good performance in general but was still
suboptimal (for a particular noise) because of its generalization (the same system
was used for all noises). Adding noisy training data in the current i-vector based
approach followed by probabilistic linear discriminant analysis (PLDA) can bring
significant gains in accuracy at various signal-to-noise ratio (SNR) levels. Besides,
[14] proposed a method for determining the nuisance characteristics presenting in
an audio signal. The method relied on the extraction of i-vectors over the signal, an
approach borrowed from the speaker recognition literature. Given a set of audio
classes in the training data, a Gaussian model was trained to represent the i-vectors
for each of these classes. During recognition, these models were used to obtain the
posterior probability of each class given the i-vector for a certain signal. This
framework allowed for a unified way of detecting any kind of nuisance charac-
teristic that was properly encoded in the i-vector used to represent the signal.

2.2 Channel Mismatch

Channel mismatch is another salient factor that influences the recognition perfor-
mance. In real applications, speech utterances are often recorded with various types
of microphones (such as desktop microphone and head phone), and these speech
signals are changed in some degree due to different transmission channels. In every
Speaker Recognition Evaluations organized by NIST [14], the channel mismatch
issue was always regarded as one of the most important challenges. To encourage
the research dealing with channel mismatch issues, different recording devices and
transmission channels have been utilized in collecting the evaluation data [15, 16].
Nowadays, research dealing with the channel mismatch of speaker verification tasks
can be categorized into three directions: feature transformation, model compensa-
tion, and score normalization.
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2.2.1 Feature Transformation

CMS (Cepstral Mean Subtraction) [17] or Cepstral Mean Normalization
(CMN) which subtracts the mean value of each feature vector over the entire
utterance is the simplest and most commonly-used method for many speaker ver-
ification systems. The channel variations are considered to be stable over the entire
utterance in these methods. Feature mapping [18] that maps features to a
channel-independent feature space and feature warping which modifies the
short-term feature distribution to follow a reference distribution are also effective
methods but with more complex implementation.

2.2.2 Channel Compensation

SMS (Speaker Model Synthesis) is popular in GMM-UBM systems, which trans-
forms models from one channel to another according to the UBM deviations
between channels. Reference [19] proposed a novel statistical modeling and com-
pensation method. In channel-mismatched conditions, the new approach uses
speaker-independent channel transformations to synthesize a speaker model that
corresponds to the channel of the test session. A cohort-based speaker model syn-
thesis (SMS) algorithm, designed for synthesizing robust speaker models without
requiring channel-specific enrollment data, was proposed in [20]. This algorithm
utilized a priori knowledge of channels extracted from speaker-specific cohort sets to
synthesize such speaker models. Besides, Ref. [21] explored techniques specific to
the SVM framework in order to derive fully non-linear channel compensations.

Factor analysis is another model-level compensation method to analyze the
discrimination of speaker models over different channels. [22] proposed a hybrid
compensation scheme (both in the feature and the model domains). The imple-
mentation is simpler, as the target speaker model does not change over the verifi-
cation experiment and the standard likelihood computation can be employed. In
addition, while the classical compensation scheme brings a bias in scores (score
normalization is needed to obtain good performance), this approach presents good
results with native scores. Finally, the use of a SVM classifier with a proper
supervector-based kernel is straightforward. JFA (Joint Factor Analysis) [23], a
more comprehensive statistical approach, has gained much success in speaker
verification. The speaker variations and channel (session) variations were modeled
as independent variables spanning in a low-rank subspace, which defined the
speaker-and channel-variations as two independent random variables following a
priori standard Gaussian distributions. Then the factors were inferred the posterior
probability of the speaker-and channel-variations from the given speech.

The i-vector method [24] assumes that the speaker and channel variations cannot
be separated by JFA because the channel variation also contains speaker infor-
mation. So in the i-vector method, a low-rank total variability space is defined to
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represent speaker-and channel-variations at the same time, and the speaker utter-
ance is represented by an i-vector which is derived by inferring the posterior
distribution of the total variance factor. There is no distinction between speaker
effects and channel effects in GMM supervector space. Both speaker-and
channel-variations are retained in i-vector. However, the total representation will
lead to less discrimination among speakers due to channel variations. Therefore,
many inter-channel compensation methods especially some popular discriminative
approaches are employed to extract more accentuated speaker information. WCCN
(With-in Class Covariance Normalization) [25] and LDA (Linear Discriminant
Analysis) [24, 26] are both linear transformation to optimize the linear kernels.
NAP (Nuisance Attribute Projection) [21] is to find the projection optimized by
minimizing the difference among channels.

The most recent research focuses on the PLDA (Probabilistic Linear
Discriminant Analysis) [27, 28], which can improve the performance of an i-vector
system greatly. PLDA is a probabilistic version of LDA, and also is a generative
model that utilizes a prior distribution on the speaker-and channel-variations. PLDA
plus length normalization was reported to be most effective. The success of this
model is believed to be largely attributed to two factors: one is its training objective
function that reduces the intra-speaker variation while enlarges inter-speaker vari-
ation, and the other is the Gaussian prior that is assumed over speaker vectors,
which improves robustness when inferring i-vectors for speakers with limited
training data.

These two factors, however, are also two main shortcomings of the PLDA
model. As for the objective function, although it encourages discrimination among
speakers, the task in speaker recognition is to discriminate the true speaker and the
imposters which is a binary decision rather than the multi-class discrimination in
PLDA training. As for the Gaussian assumption, although it greatly simplifies the
model, the assumption is rather strong and is not practical in some scenarios,
leading to less representative models.

Some researchers have noticed these problems. For example, to go beyond the
Gaussian assumption, Kenny [29] proposed a heavy-tailed PLDA which assumed a
non-Gaussian prior over the speaker mean vector. Garcia-Romero and Espy-Wilson
[30] found that length normalization could compensate for the non-Gaussian effect
and boost performance of Gaussian PLDA to the level of the heavy-tailed PLDA.
Burget, Cumani and colleagues [31, 32] proposed a pair-wised discriminative
model discriminating the true speakers and the imposters. In their approach, the
model accepted a pair of i-vectors and predicted the probability that how they
belong to the same speaker. The input features of the model were derived from the
i-vector pairs according to a form derived from the PLDA score function (further
generalized to any symmetric score functions in [32]), and the model was trained on
i-vector pairs that have been labelled as identical or different speakers. A particular
shortcoming of this approach was that the feature expansion was highly complex.
To solve this problem, a partial discriminative training approach was proposed in
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[33], which optimized the discriminative model on a subspace without requiring
any feature expansion. In [34], Wang proposed a discriminative approach based on
deep neural networks (DNN), sharing the same idea as in the pair-wised training,
whereas the features were defined manually.

2.2.3 Score Normalization

The score normalization algorithms include Hnorm [35, 36], Htnorm [37], Cnorm
[38], and Atnorm [39], which utilize some a priori knowledge of channels to
normalize impostors’ verification scores into a standard normal distribution, so as to
remove the influence of channel distortions from verification scores.

2.3 Multiple Speakers

Speaker recognition has generally been viewed as a problem of verifying or
identifying a particular speaker in a speech segment containing only a single
speaker. But for some real applications, the problem is to verify or identify par-
ticular speakers in a speech segment containing multiple speakers [40, 41]. Due to
the diversity of multiple speaker speech, it is much more complex than a single
speaker recognition and it requires high robustness to the existing system.

In a multiple-speaker scenario, if the system cannot separate single speaker
segments effectively, it will directly affect the system performance. Automatic
systems need to be able to segment the speech containing multiple speakers into
segments and to determine whether the speech by a particular speaker is present and
where in the segment this speech occurs [41], and then a series of single speaker
recognition approaches could be performed. Figure 2.1 is a basic framework of a
multiple-speaker recognition system. When multiple-speaker speech coming, the
first procedure performs noise reduction to purify the speech audio. Following, the
feature extraction and the speech activity detection is then normally performed to
remove the influence of non-speech segments. Single speaker segments are
extracted with speaker segmentation and clustering, and then recognition performs
the same way as in single speaker recognition. Current research directions in
multiple-speaker tasks include: robust features, robust speaker models, and seg-
mentation and clustering algorithms. Robust features focus on extracting effective
features in multiple-speaker scenarios, apart from MFCC, time-delay features,
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Fig. 2.1 System framework of multiple-speaker recognition
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prosodic features and voice-quality features can be beneficial. Robust speaker
models describe speakers in a short-time pronunciation to make more stable
speaker representation. Moreover, the speaker segmentation and the clustering
algorithms are two core techniques in multiple-speaker recognition. After several
iterations of segmentation and clustering till convergence, the performance of
multi-speaker recognition system will be improved.

2.3.1 Robust Features

One of the factors that critically affects the performance of a multiple-speaker task
is the process of feature extraction. MFCC is one of the most commonly used
short-term speech features in speaker recognition, and also effectively applied
to multiple-speaker tasks. Besides, the time-delay feature is successful for speaker
localization especially under the multiple microphone channels. Assuming that the
position of any speaker does not change, the speaker localization may thus be used
as alternative features in multiple-speaker tasks [42], which has become extremely
popular. Some research also combined acoustic features and inter-channel delay
features at the weighted log-likelihood level [43]. The use of prosodic features is
emerging as a reaction to the theoretical inconsistency derived from using MFCC
features for both speaker recognition and speech recognition. In [44], the authors
presented a systematic investigation which showed both short-term cepstral features
and long-term prosodic feature can provide significant information for speaker
discrimination. References [45, 46] fused the above two features with jitter and
shimmer voice-quality features and achieved considerable improvements.

2.3.2 Robust Speaker Models

One of the key points in multiple-speaker recognition is how to accurately represent
speakers within a short utterance. So robust speaker modeling has become another
research topic to improve the multiple-speaker recognition performance. The
eigenvoice-based modeling has shown its advantages to represent speakers in
speaker segmentation tasks [47], and it gets the prior knowledge about the speaker
space to find a low dimensional vector of speaker factors that summarize the salient
speaker characteristics. The speaker factors can be computed effectively in a small
size window and do not suffer the problem of data sparseness. Reference [48] used
an i-vector-based approach to search the speaker change points with the same idea.
In order to enhance the stability and hence to improve the performance, Ref. [49]
proposed a method based on a set of reference speaker models which can make a
representation of the whole speaker model space. Recently, with the great success
of deep neural network, Ref. [50] first proposed a novel deep neural architecture
(DNN) especially for learning speaker-specific characteristics from MFCC, and
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used this kind of speaker-specific characteristics to perform speaker segmentation
and clustering. Reference [51] compared 4 types of neural network feature trans-
forms and found that classification networks can achieve better result than com-
parison networks in multiple-speaker tasks.

2.3.3 Segmentation and Clustering Algorithms

There are two types of algorithms for speaker segmentation and clustering. One is
to unity the segmentation and clustering tasks into one-step, and the other is to
perform the segmentation and the clustering tasks independently. The former is to
identify the speaker information while getting the speaker segments [52]; The latter
is to segment the audio from multiple speakers into speech segments from single
speakers, and then cluster the segments from the same speakers for independent
identification.

The state-of-the-art one-step segmentation and clustering algorithm is based on
E-HMM models [53]. Each of them can fit into two categories: the bottom-up [54,
55] and the top-down [56] approach. The bottom-up approach is initialized with
many clusters (usually more clusters than actual speakers), and the top-down
approach is initialized with one cluster. In both cases, the aim is to iteratively
converge towards an optimum number of clusters. Reference [57] made a com-
parative study of these two approaches and concluded that the bottom-up approach
can capture comparatively purer models and thus can be more sensitive to nuisance
variation such as the speech content; while the top-down approach can produce less
discriminative speaker models but can potentially better normalized against nui-
sance variation. To solve the problem against initialization parameter variation in
the bottom-up approach, Ref. [58] presented a method to reduce manual tuning of
these values. In the E-HMM segmentation and clustering approach, the problem is
rendered particularly difficulty by the fact that there is not any a prior knowledge of
the number of speakers. Reference [59] addressed this problem with the hierarchical
Dirichlet process hidden Markov model (HDP-HMM) and sticky HDP-HMM.
Reference [60] proposed a process for including priors of speaker counting with
agglomerative hierarchical clustering and demonstrated significantly improvement
in terms of calibration error for speaker diarization.

When performing segmentation and clustering separately, some distance
measures need to be pre-defined to detect speaker change points in the segmentation
step. The Bayesian Information Criterion (BIC) is one kind of method for model
selection and was used as the distance measure in [61]. The Generalized Likelihood
Ratio (GLR) [62] is another effective distance measure method. Reference [63] used
Kullback-Leibler Divergence (KL) to perform speaker segmentation in broadcast
news tasks and achieved great success. Support Vector Machine (SVM) is a type of
expeditious classification and was used for segmentation in [64]. In the clustering
step, in order to reduce the cost of computation, the agglomerative information
bottleneck (aIB) [65] and the sequential information bottleneck (sIB) [66] were
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proposed and they therefore were widely used in the meeting scenarios. Reference
[67] made a noise-robust speaker clustering based on spectral clustering and
compared it with the hierarchical clustering and the K-means clustering. Reference
[68] proposed a novel DNN-based clustering and performed re-segmentation and
clustering in each iteration. Reference [69] investigated how accurate the clustering
algorithm will be depending on the characteristics of the audio stream, which was
an effective guidance of speaker clustering. ELISA [70] was a hybrid system
combining the segmentation and the clustering steps together.

2.4 Discussions

Background noise, channel mismatch and multiple speakers are three most common
factors that will influence the performance of speaker recognition systems. In real
applications, there is often no prior knowledge of environmental noise, transmis-
sion channel and number of speakers containing in the speech segment in advance.
Therefore, it is difficult to pre-train the noise/channel model and define the clus-
tering number. To deal with these environment-related issues, researchers have
carried to do some studies from different of views. In this chapter, we summarize
the latest research studies and techniques among these three factors from different
aspects. We believe that these three factors are still the main research directions.
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