Contents

1 Introduction .. 1
 1.1 Research Background .. 1
 1.2 Significance and Implication of Earthquake Disaster Simulation of Civil Infrastructures 3
 1.3 Research Framework and Contents 4

2 High-Fidelity Computational Models for Earthquake Disaster Simulation of Tall Buildings 7
 2.1 Introduction .. 7
 2.2 Fiber-Beam Element Model 8
 2.2.1 Fundamental Principals 8
 2.2.2 Uniaxial Stress–Strain Model of Concrete 10
 2.2.3 Uniaxial Stress–Strain Model of Steel Reinforcement .. 14
 2.2.4 Validation Through Reinforced Concrete Specimens .. 18
 2.2.5 Stress–Strain Model of Composite Components 22
 2.3 Multilayer Shell Model 26
 2.3.1 Fundamental Principal 26
 2.3.2 High-Performance Flat Shell Element NLDKGQ 28
 2.3.3 Constitutive Model of Concrete and Steel 36
 2.3.4 Implementation of Multilayer Shell Element in OpenSees .. 38
 2.3.5 Validation Through Reinforced Concrete Specimens .. 40
 2.3.6 Collapse Simulation of an RC Frame Core-Tube Tall Building 42
 2.4 Hysteretic Hinge Model 45
 2.4.1 Overview .. 45
 2.4.2 The Proposed Hysteretic Hinge Model 45
 2.4.3 Validation of the Proposed Hysteretic Hinge Model 49
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 Multi-scale Modeling</td>
<td>50</td>
</tr>
<tr>
<td>2.5.1 Overview</td>
<td>50</td>
</tr>
<tr>
<td>2.5.2 Interface Modeling</td>
<td>50</td>
</tr>
<tr>
<td>2.6 Element Deactivation and Collapse Simulation</td>
<td>52</td>
</tr>
<tr>
<td>2.6.1 Element Deactivation for Component Failure Simulation</td>
<td>52</td>
</tr>
<tr>
<td>2.6.2 Visualization of the Movement of Deactivated Elements Using Physics Engine</td>
<td>53</td>
</tr>
<tr>
<td>2.7 Summary</td>
<td>58</td>
</tr>
<tr>
<td>3 High-Performance Computing and Visualization for Earthquake Disaster Simulation of Tall Buildings</td>
<td>59</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>59</td>
</tr>
<tr>
<td>3.2 GPU-Based High-Performance Matrix Solvers for OpenSees</td>
<td>59</td>
</tr>
<tr>
<td>3.2.1 Fundamental Conception of General-Purpose Computing on GPU (GPGPU)</td>
<td>59</td>
</tr>
<tr>
<td>3.2.2 High-Performance Solver for Sparse System of Equations (SOE) in OpenSees</td>
<td>60</td>
</tr>
<tr>
<td>3.2.3 Case Studies</td>
<td>62</td>
</tr>
<tr>
<td>3.3 Physics Engine-Based High-Performance Visualization</td>
<td>64</td>
</tr>
<tr>
<td>3.3.1 Overview</td>
<td>64</td>
</tr>
<tr>
<td>3.3.2 Overall Visualization Framework</td>
<td>67</td>
</tr>
<tr>
<td>3.3.3 Clustering-Based Key Frame Extractions</td>
<td>70</td>
</tr>
<tr>
<td>3.3.5 Case Study</td>
<td>75</td>
</tr>
<tr>
<td>3.4 Summary</td>
<td>77</td>
</tr>
<tr>
<td>4 Earthquake Disaster Simulation of Typical Supertall Buildings</td>
<td>79</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>79</td>
</tr>
<tr>
<td>4.2 Earthquake Disaster Simulation of the Shanghai Tower</td>
<td>79</td>
</tr>
<tr>
<td>4.2.1 Overview of the Shanghai Tower</td>
<td>79</td>
</tr>
<tr>
<td>4.2.2 Finite Element Model of the Shanghai Tower</td>
<td>81</td>
</tr>
<tr>
<td>4.2.3 Earthquake-Induced Collapse Simulation</td>
<td>89</td>
</tr>
<tr>
<td>4.2.4 Impact of Soil-Structure Interaction</td>
<td>101</td>
</tr>
<tr>
<td>4.3 Earthquake Disaster Simulation of the Z15 Tower</td>
<td>109</td>
</tr>
<tr>
<td>4.3.1 Introduction of the Z15 Tower</td>
<td>109</td>
</tr>
<tr>
<td>4.3.2 The Finite Element Model.</td>
<td>111</td>
</tr>
<tr>
<td>4.3.3 Earthquake-Induced Collapse Simulation of the Half-Braced Scheme</td>
<td>117</td>
</tr>
<tr>
<td>4.3.4 Earthquake-Induced Collapse Simulation of the Fully Braced Scheme</td>
<td>123</td>
</tr>
<tr>
<td>4.3.5 Comparison Between the Two Design Schemes</td>
<td>133</td>
</tr>
<tr>
<td>4.4 Summary</td>
<td>136</td>
</tr>
</tbody>
</table>
5 Simplified Models for Earthquake Disaster Simulation of Supertall Buildings .. 137
 5.1 Introduction .. 137
 5.2 The Flexural-Shear Model .. 138
 5.2.1 Fundamental Concepts of the Flexural-Shear Model 138
 5.2.2 Application of the Flexural-Shear Model for Supertall Buildings 140
 5.3 The Fishbone Model .. 144
 5.3.1 Fundamental Concepts of the Fishbone Model 144
 5.3.2 The Fishbone Model of the Shanghai Tower 145
 5.3.3 The Fishbone Models of the Z15 Tower 163
 5.4 Summary .. 179

6 Engineering Application of Earthquake Disaster Simulation of Supertall Buildings 181
 6.1 Introduction .. 181
 6.2 Ground Motion IM for Supertall Buildings 181
 6.2.1 Background .. 181
 6.2.2 A Brief Review of the Existing IMs 182
 6.2.3 An Improved IM for Supertall Buildings 184
 6.2.4 Comparison of Different IMs 188
 6.2.5 Comparison of Different IMs Through IDA-Based Collapse Simulation 194
 6.3 Minimum Base Shear Force for Supertall Buildings 196
 6.3.1 Background .. 196
 6.3.2 Provisions of Minimum Base Shear Force in Chinese Codes .. 197
 6.3.3 Comparison with the Corresponding Provisions in the US Design Codes 198
 6.3.4 Case Study of a Hypothetical Supertall Building 199
 6.4 Optimal Design of the Z15 Tower Based on Collapse Analysis .. 214
 6.4.1 Optimal Design of Minimum Base Shear Force 214
 6.4.2 Optimal Design of Brace-Embedded Shear Wall 221
 6.5 Summary .. 224

7 Comparison of Seismic Design and Performance of Tall Buildings Based on Chinese and US Design Codes 225
 7.1 Introduction .. 225
 7.1.1 From Performance-Based Design to Resilience-Based Design .. 225
 7.1.2 The Rationale of Comparison 227
 7.2 Comparison of the Seismic Designs of Typical Tall Buildings Based on the Chinese and US Design Codes 229
8.3.5 Application of the Proposed Method to Seismic Simulation of Regional Tall Buildings 298
8.4 Summary .. 300

9 Visualization for Earthquake Disaster Simulation of Urban Buildings ... 303
9.1 Introduction .. 303
9.2 2.5D Model for Visualization of Urban Building Seismic Simulation 304
9.3 3D-GIS Model for Visualization of Urban Building Seismic Simulation .. 306
9.3.1 Overview 306
9.3.2 Proposed 3D Simulation Methodology 307
9.3.3 3D-GIS Data Generation 308
9.3.4 High-Fidelity Visualization Using 3D Urban Polygon Model .. 312
9.3.5 Implementation 314
9.3.6 Case Study 315
9.4 Physics Engine-Based Collapse Simulation of Urban Buildings .. 317
9.4.1 Overview 317
9.4.2 Physics Engine-Based Collapse Simulation 319
9.4.3 Integrated Visualization System 322
9.4.4 Case Study 323
9.5 Summary .. 325

10 High-Performance Computing for Earthquake Disaster Simulation of Urban Buildings 327
10.1 Introduction .. 327
10.2 Coarse-Grained CPU/GPU Collaborative Parallel Computing .. 327
10.2.1 Overview 327
10.2.2 Computing Program Architecture 328
10.2.3 Performance Benchmarking 332
10.3 Seismic Simulation of Urban Buildings Using Distributed Computing and Multi-fidelity Models 338
10.3.1 Various Models with Different Levels of Fidelities ... 338
10.3.2 The Overall Computational Framework 339
10.3.3 Software Implementation 341
10.3.4 Case Study 344
10.4 Summary .. 349

11 Earthquake Disaster Simulation of Typical Urban Areas 351
11.1 Introduction .. 351
11.2 Earthquake Disaster Simulation of Ludian Earthquake 351
11.2.1 Seismic Damage to Buildings in Longtoushan Town .. 352
11.2.2 Comparison with Field Investigation Data .. 354
11.2.3 Comparison with Damage Probability Matrix Method 355
11.2.4 Visualization of Seismic Simulation .. 356
11.3 Earthquake Disaster Simulation of Beijing CBD .. 357
 11.3.1 Building Models in Beijing CBD ... 358
 11.3.2 The Ground Motion of Sanhe-Pinggu Earthquake 359
 11.3.3 Seismic Damage Simulation Results .. 362
 11.3.4 Visualization of the Building Seismic Damage Results 364
11.4 Earthquake Disaster Simulation of a Medium-Sized City in China 367
 11.4.1 Building Models of the Medium-Sized City .. 367
 11.4.2 Parallel Computing for Seismic Simulation .. 369
 11.4.3 Discussion of the Seismic Simulation Results .. 369
11.5 Earthquake Disaster Simulation of Xi’an, Taiyuan, and Tangshan Cities in China 373
 11.5.1 Earthquake Disaster Simulation of Baqiao District in Xi’an City 373
 11.5.2 Earthquake Disaster Simulation for Taiyuan and Tangshan Cities 381
11.6 Summary ... 384
12 Earthquake Loss Prediction for Typical Urban Areas ... 385
 12.1 Introduction ... 385
 12.2 Earthquake Loss Prediction for Urban Areas Based on FEMA P-58 Method 388
 12.2.1 Overview ... 388
 12.2.2 Earthquake Loss Prediction Methodology ... 389
 12.2.3 Case Study: Regional Earthquake Loss Prediction of the Tsinghua University Campus 392
 12.2.4 Results and Discussion on Earthquake Loss Prediction 397
 12.2.5 Findings of the Earthquake Loss Prediction Study 400
 12.3 Secondary Disaster Simulation of Falling Debris and Site Selection of Emergence Shelters ... 404
 12.3.1 Overview ... 404
 12.3.2 The Proposed Simulation Framework ... 406
 12.3.3 Simulation Method ... 408
 12.3.4 Case Study ... 412
 12.3.5 Findings of the Earthquake-Induced Falling Objects Simulation 414
 12.4 Summary ... 416
<table>
<thead>
<tr>
<th>13 Conclusions</th>
<th>417</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Major Achievements and Contributions</td>
<td>417</td>
</tr>
<tr>
<td>13.2 A Future Perspective</td>
<td>418</td>
</tr>
<tr>
<td>References</td>
<td>421</td>
</tr>
</tbody>
</table>
Earthquake Disaster Simulation of Civil Infrastructures
From Tall Buildings to Urban Areas
Lu, X.; Guan, H.
2017, XVI, 440 p. 337 illus., 296 illus. in color.,
Hardcover
ISBN: 978-981-10-3086-4