Contents

1 Introduction ... 1
1.1 Research Background 1
1.2 Significance and Implication of Earthquake Disaster Simulation of Civil Infrastructures 3
1.3 Research Framework and Contents 4

2 High-Fidelity Computational Models for Earthquake Disaster Simulation of Tall Buildings 7
2.1 Introduction .. 7
2.2 Fiber-Beam Element Model 8
 2.2.1 Fundamental Principals 8
 2.2.2 Uniaxial Stress–Strain Model of Concrete 10
 2.2.3 Uniaxial Stress–Strain Model of Steel Reinforcement .. 14
 2.2.4 Validation Through Reinforced Concrete Specimens .. 18
 2.2.5 Stress–Strain Model of Composite Components 22
2.3 Multilayer Shell Model 26
 2.3.1 Fundamental Principal 26
 2.3.2 High-Performance Flat Shell Element NLDDKQ 28
 2.3.3 Constitutive Model of Concrete and Steel 36
 2.3.4 Implementation of Multilayer Shell Element in OpenSees .. 38
 2.3.5 Validation Through Reinforced Concrete Specimens .. 40
 2.3.6 Collapse Simulation of an RC Frame Core-Tube Tall Building .. 42
2.4 Hysteretic Hinge Model 45
 2.4.1 Overview 45
 2.4.2 The Proposed Hysteretic Hinge Model 45
 2.4.3 Validation of the Proposed Hysteretic Hinge Model ... 49
2.5 Multi-scale Modeling
- 2.5.1 Overview
- 2.5.2 Interface Modeling

2.6 Element Deactivation and Collapse Simulation
- 2.6.1 Element Deactivation for Component Failure Simulation
- 2.6.2 Visualization of the Movement of deactivated Elements Using Physics Engine

2.7 Summary

3 High-Performance Computing and Visualization for Earthquake Disaster Simulation of Tall Buildings
- 3.1 Introduction
- 3.2 GPU-Based High-Performance Matrix Solvers for OpenSees
 - 3.2.1 Fundamental Conception of General-Purpose Computing on GPU (GPGPU)
 - 3.2.2 High-Performance Solver for Sparse System of Equations (SOE) in OpenSees
 - 3.2.3 Case Studies
- 3.3 Physics Engine-Based High-Performance Visualization
 - 3.3.1 Overview
 - 3.3.2 Overall Visualization Framework
 - 3.3.3 Clustering-Based Key Frame Extractions
 - 3.3.4 Parallel Frame Interpolation
 - 3.3.5 Case Study
- 3.4 Summary

4 Earthquake Disaster Simulation of Typical Supertall Buildings
- 4.1 Introduction
- 4.2 Earthquake Disaster Simulation of the Shanghai Tower
 - 4.2.1 Overview of the Shanghai Tower
 - 4.2.2 Finite Element Model of the Shanghai Tower
 - 4.2.3 Earthquake-Induced Collapse Simulation
 - 4.2.4 Impact of Soil-Structure Interaction
- 4.3 Earthquake Disaster Simulation of the Z15 Tower
 - 4.3.1 Introduction of the Z15 Tower
 - 4.3.2 The Finite Element Model
 - 4.3.3 Earthquake-Induced Collapse Simulation of the Half-Braced Scheme
 - 4.3.4 Earthquake-Induced Collapse Simulation of the Fully Braced Scheme
 - 4.3.5 Comparison Between the Two Design Schemes
- 4.4 Summary
5 Simplified Models for Earthquake Disaster Simulation of Supertall Buildings .. 137
 5.1 Introduction .. 137
 5.2 The Flexural-Shear Model 138
 5.2.1 Fundamental Concepts of the Flexural-Shear Model .. 138
 5.2.2 Application of the Flexural-Shear Model for Supertall Buildings 140
 5.3 The Fishbone Model 144
 5.3.1 Fundamental Concepts of the Fishbone Model 144
 5.3.2 The Fishbone Model of the Shanghai Tower 145
 5.3.3 The Fishbone Models of the Z15 Tower 163
 5.4 Summary .. 179

6 Engineering Application of Earthquake Disaster Simulation of Supertall Buildings .. 181
 6.1 Introduction .. 181
 6.2 Ground Motion IM for Supertall Buildings 181
 6.2.1 Background 181
 6.2.2 A Brief Review of the Existing IMs 182
 6.2.3 An Improved IM for Supertall Buildings 184
 6.2.4 Comparison of Different IMs 188
 6.2.5 Comparison of Different IMs Through IDA-Based Collapse Simulation 194
 6.3 Minimum Base Shear Force for Supertall Buildings 196
 6.3.1 Background 196
 6.3.2 Provisions of Minimum Base Shear Force in Chinese Codes 197
 6.3.3 Comparison with the Corresponding Provisions in the US Design Codes 198
 6.3.4 Case Study of a Hypothetical Supertall Building 199
 6.4 Optimal Design of the Z15 Tower Based on Collapse Analysis .. 214
 6.4.1 Optimal Design of Minimum Base Shear Force 214
 6.4.2 Optimal Design of Brace-Embedded Shear Wall 221
 6.5 Summary .. 224

7 Comparison of Seismic Design and Performance of Tall Buildings Based on Chinese and US Design Codes 225
 7.1 Introduction .. 225
 7.1.1 From Performance-Based Design to Resilience-Based Design 225
 7.1.2 The Rationale of Comparison .. 227
 7.2 Comparison of the Seismic Designs of Typical Tall Buildings Based on the Chinese and US Design Codes 229
7.2.1	A Brief Overview of the Benchmark Building	229
7.2.2	Seismic Design Load	231
7.2.3	Comparison of the Design Outcomes	234
7.2.4	Discussion on the Design Outcomes	239
7.3	Comparison of the Structural Performance of Tall Buildings Designed Based on the US and Chinese Codes	240
7.3.1	Nonlinear Finite Element Models of Buildings 2A and 2N	240
7.3.2	Pushover Analysis	240
7.3.3	Nonlinear Time-History Analysis	242
7.3.4	Collapse Analysis Based on IDA	245
7.4	Comparison of the Seismic Resilience of Tall Buildings Designed Based on the US and Chinese Codes	246
7.4.1	Quantification Method for Seismic Resilience	246
7.4.2	Failure Probabilities	250
7.4.3	Repair Costs	250
7.4.4	Casualties	253
7.4.5	Repair Time	253
7.5	Summary	256

8 Nonlinear MDOF Models for Earthquake Disaster Simulation of Urban Buildings

8.1	Introduction	257
8.1.1	The Probability Matrix Method	258
8.1.2	The Capacity Spectrum Method	258
8.1.3	The Simulation Method Based on Nonlinear MDOF Model and Time-History Analysis	259
8.2	Nonlinear MDOF Shear Model of Multi-story Buildings	260
8.2.1	Overview	260
8.2.2	Nonlinear MDOF Shear Model	261
8.2.3	Parameter Determination for Multi-story Buildings in China	262
8.2.4	Parameter Determination for Backbone Curve Based on the HAZUS Data	272
8.2.5	Calibration of the Hysteretic Parameter	273
8.2.6	Damage Assessment Method	274
8.2.7	Validation of the Proposed Parameter Determination Method	276
8.3	Nonlinear MDOF Flexural-Shear Model of Tall Buildings	278
8.3.1	Overview	278
8.3.2	Nonlinear MDOF Flexural-Shear Model	280
8.3.3	Parameter Calibration Based on Building Attribute Data	282
8.3.4	Validation and Application of the Proposed Model to Individual Tall Buildings	291
11.2.1 Seismic Damage to Buildings in Longtoushan Town .. 352
11.2.2 Comparison with Field Investigation Data ... 354
11.2.3 Comparison with Damage Probability Matrix Method ... 355
11.2.4 Visualization of Seismic Simulation ... 356
11.3 Earthquake Disaster Simulation of Beijing CBD .. 357
 11.3.1 Building Models in Beijing CBD .. 358
 11.3.2 The Ground Motion of Sanhe-Pinggu Earthquake ... 359
 11.3.3 Seismic Damage Simulation Results .. 362
 11.3.4 Visualization of the Building Seismic Damage Results .. 364
11.4 Earthquake Disaster Simulation of a Medium-Sized City in China 367
 11.4.1 Building Models of the Medium-Sized City .. 367
 11.4.2 Parallel Computing for Seismic Simulation ... 369
 11.4.3 Discussion of the Seismic Simulation Results .. 369
11.5 Earthquake Disaster Simulation of Xi’an, Taiyuan, and Tangshan Cities in China 373
 11.5.1 Earthquake Disaster Simulation of Baqiao District in Xi’an City 373
 11.5.2 Earthquake Disaster Simulation for Taiyuan and Tangshan Cities 381
11.6 Summary ... 384

12 Earthquake Loss Prediction for Typical Urban Areas ... 385
12.1 Introduction .. 385
12.2 Earthquake Loss Prediction for Urban Areas Based on FEMA P-58 Method 385
 12.2.1 Overview ... 385
 12.2.2 Earthquake Loss Prediction Methodology ... 387
 12.2.3 Case Study: Regional Earthquake Loss Prediction of the Tsinghua University Campus .. 392
 12.2.4 Results and Discussion on Earthquake Loss Prediction ... 397
 12.2.5 Findings of the Earthquake Loss Prediction Study .. 401
12.3 Secondary Disaster Simulation of Falling Debris and Site Selection of Emergence Shelters .. 404
 12.3.1 Overview ... 404
 12.3.2 The Proposed Simulation Framework ... 406
 12.3.3 Simulation Method ... 408
 12.3.4 Case Study ... 412
 12.3.5 Findings of the Earthquake-Induced Falling Objects Simulation 414
12.4 Summary ... 416
Earthquake Disaster Simulation of Civil Infrastructures
From Tall Buildings to Urban Areas
Lu, X.; Guan, H.
2017, XVI, 440 p. 337 illus., 296 illus. in color., Hardcover
ISBN: 978-981-10-3086-4