Contents

Part I Stable Equilibrium Theory and Key Techniques for Underground Excavations

1 Formation and Development of Underground Engineering Stable Equilibrium Theory ... 3
 1.1 Introduction ... 3
 1.2 Physical Significance of Engineering Structure Stable Equilibrium and Deformation Compatibility Control 9
 1.3 Traditional Load Theory and Understanding 13
 1.3.1 Loose Load Theory .. 13
 1.3.2 Rock Bearing Theory .. 16
 1.4 Stable Equilibrium Theory for Underground Engineering 19
 1.4.1 Establishment of Stable Equilibrium Theory for Underground Engineering 19
 1.4.2 Extension and Embodiment of Underground Engineering Stable Equilibrium Theory 27
 1.4.3 Application of Underground Engineering Stable Equilibrium Theory .. 29

References .. 31

2 Key Techniques of Underground Engineering Stable Equilibrium Theory .. 33
 2.1 Excavation Energy Control Technique 33
 2.1.1 Basic Concept of Excavation Energy Control Technique ... 33
 2.1.2 Application of Excavation Energy Control Technique .. 35
 2.2 Strong Pre-reinforcement Technique 38
 2.2.1 Basic Idea and Expression Forms of Strong Pre-reinforcement Technique ... 38
 2.2.2 Application of Strong Pre-reinforcement Technique in Surrounding Rock with Satisfactory Self-stabilizing Capacity ... 43
2.2.3 Application of Strong Pre-reinforcement Technique to Deep Excavations in Surrounding Rock with Poor Self-stabilizing Capacity ... 47

2.2.4 Application of Strong Pre-reinforcement Technique to Deep Excavations in Surrounding Rock with Large Deformation .. 53

2.2.5 Application of Strong Pre-reinforcement Technique to Shallow-Buried Tunnel in Strata with Poor Self-stabilizing Capacity ... 61

2.3 Comprehensive Stress-Independence Technique 71

2.3.1 Concept of Stress Independence for Tunnels and Case Study 71

2.3.2 Stress Independence for Design and Construction of Multi-arch Tunnels 73

2.3.3 Stress Independence for Design and Construction of Small-clearance Twin Tunnels 79

2.4 Deformation Compatibility Control Technique 83

2.4.1 Necessary Conditions for Deformation Compatibility Control 83

2.4.2 Measures of Deformation Compatibility Control for Mountain Tunnels 84

2.4.3 Measures of Deformation Compatibility Controlling for Shield Tunneling Method 86

2.4.4 Segment Grouting with Quick-Hardening Grout 89

References .. 91

Part II Application of Stable Equilibrium Theory to Construction of Mountain Tunnels

3 Deformation Compatibility Control Technique for Tunnels in Soft Strata with Mixed Soil and Rock .. 95

3.1 Basic Information ... 95

3.2 Construction Scheme for the Initial Stage 96

3.2.1 Improvement of Construction Scheme ... 100

3.3 Testing and Verification .. 103

References .. 104

4 Reasonable Construction Methods for Tunneling Beneath an Operating Highway .. 105

4.1 Engineering Background .. 105

4.2 Lessons Learned from Similar Tunnel Design Schemes 106

4.3 Highway Tunnel Construction Scheme ... 112

4.4 Review of Alternative Scheme for Highway Tunnel Construction 120

References ... 121
Part III Application of Stable Equilibrium Theory to Urban Underground Engineering Construction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Application of Stable Equilibrium Theory to Metro Tunnels and River-Crossing Tunnels Using Shield Tunneling Method</td>
<td>125</td>
</tr>
<tr>
<td>5.1 Deformation Compatibility Control Technique for Metro Shield Tunnel</td>
<td>125</td>
</tr>
<tr>
<td>5.2 Deformation Compatibility Control Technique for Qianjiang Tunnel Crossing Embankments of the Two Banks</td>
<td>131</td>
</tr>
<tr>
<td>5.2.1 Introduction to the Project</td>
<td>131</td>
</tr>
<tr>
<td>5.2.2 Impact of Shield Construction on the Ancient Embankment</td>
<td>134</td>
</tr>
<tr>
<td>5.2.3 Construction Controlling Measures for Shield Tunneling with Stable Equilibrium Impact Considered</td>
<td>137</td>
</tr>
<tr>
<td>5.2.4 Construction Practice Results</td>
<td>140</td>
</tr>
<tr>
<td>References</td>
<td>141</td>
</tr>
</tbody>
</table>

6 Deformation Compatibility Control Technique for Foundation Pits	143
6.1 Typical Cases of Foundation Pit Instability	143
6.2 Deformation Compatibility Control Technique for Ultra-Deep Foundation Pit of Qianjiang Tunnel	148
References	157
Stability Assessment for Underground Excavations and Key Construction Techniques
Zhu, H.; Chen, M.; Zhao, Y.; Niu, F.
2017, XVII, 157 p. 107 illus., Hardcover