1 Importance of Negative Pressure Wards ... 1
 1.1 The Disaster at the Beginning of the Century 1
 1.2 Severity of Airborne Infection ... 2
 1.3 Requirement for Negative Pressure Ward 8
References .. 11

2 Three Misunderstandings for Design of Negative Pressure Ward 13
 2.1 About High Negative Pressure ... 13
 2.1.1 Effect of Pressure Difference 13
 2.1.2 Ability to Control Pollution Dispersion by Pressure Difference 16
 2.2 About Airproof Gate .. 25
 2.2.1 Effect of Entrainment by Door 25
 2.2.2 Dynamic Characteristic of Door 26
 2.2.3 Effect of Entrainment by Occupant 28
 2.2.4 Effect of Temperature Difference Between Indoors and Outdoors. . 29
 2.2.5 Balance Equation of Air Change Rate with Convective Flow by Temperature Difference 37
 2.2.6 Relationship Between Temperature Difference and Pollutant Exchange Rate .. 39
 2.3 About Full Fresh Air .. 46
 2.3.1 Outline .. 46
 2.3.2 HEPA Filter and Virus Particles 46
References .. 49

3 Principle and Technology of Dynamic Isolation 51
 3.1 Proper Pressure Difference for Isolation 51
 3.1.1 Physical Significance of Pressure Difference 52
 3.1.2 Determination of Pressure Difference 53
3.2 Buffer Room for Isolation 57
 3.2.1 Mode of Buffer Room 58
 3.2.2 Isolation Coefficient of Buffer Room 67
 3.2.3 Influencing Factors for Performance of Buffer Room . 69
 3.2.4 Experimental Validation 71
 3.2.5 Door of Buffer Room 86
3.3 Airflow Isolation in Mainstream Area 88
 3.3.1 Concept of Mainstream Area 88
 3.3.2 Function of Mainstream Area 90
3.4 Application of Self-circulation Air Through HEPA Filter 92
 3.4.1 Application Principle of Circulation Air 92
 3.4.2 Function of HEPA Filter 92
 3.4.3 Experimental Validation for Application of HEPA Filter with Circulation Air 101
References .. 109

4 Air Distribution Design in Negative Pressure Isolation Ward 111
 4.1 Fundamental Principle of Air Distribution in Negative Pressure Isolation Ward 111
 4.2 Velocity Field Near Return Air Opening 112
 4.3 Velocity Decay Near Air Supply Outlet 114
 4.4 The Following Speed and the Deposition Velocity 118
 4.5 Composition of Velocities and Vortex 124
 4.6 Position of Air Supply, Exhaust and Return Outlets in Isolation Ward .. 126
 4.6.1 Fundamental Principle 126
 4.6.2 Related Assessment Index 131
 4.6.3 Results from Numerical Simulation 132
 4.6.4 Experimental Validation on Performance of Opening Position .. 138
References .. 144

5 Calculation of Air Change Rate 147
 5.1 Outline .. 147
 5.2 Two System Modes of Isolation Ward 149
 5.2.1 Circulation Air System 149
 5.2.2 Full Fresh Air System 150
 5.3 Determination of Bacterial Generation Rate Indoors 151
 5.3.1 Bacterial Generation Rate from Ordinary Patients 151
 5.3.2 Analysis of Bacterial Generation Rate from Respiratory System .. 151
 5.4 Determination of Bacterial Concentration Standard Indoors .. 155
 5.4.1 Outline ... 155
 5.4.2 Standard 157
5.5 Calculation of Air Change Rate 159
 5.5.1 Calculation Based on the Minimum Airborne Droplet Nuclei with Diameter $0.075 \, \mu m$ 159
 5.5.2 Calculation Based on the Maximum Airborne Droplet Nuclei with Diameter from $10 \, \mu m$ to $1.6 \, \mu m$ After Evaporation 159
 5.5.3 Calculation Based on the Ordinary Microbial Particles Indoors .. 160
 5.5.4 Calculation Based on Environmental Standard 160

References .. 161

6 Air Exhaust and Air Return Safely Are Necessary Conditions 163
 6.1 Importance of Non-leakage Apparatus for Air Exhaust and Air Return .. 163
 6.2 Principle of Negative Pressure and Effective Air Exhaust Device Sealed with Dynamic Air Current. 167
 6.2.1 Structure of the Device 167
 6.2.2 Experiment on the Device 168
 6.2.3 Operation Method 175
 6.3 Theoretical Analysis for Sealing with Dynamic Air Current 176
 6.3.1 Physical Model 176
 6.3.2 Calculation 177

References .. 179

7 Design Points for Negative Pressure Isolation Ward 181
 7.1 Classification ... 181
 7.1.1 Classification of Infectious Diseases 181
 7.1.2 Classification of Isolation Wards 182
 7.2 Layout Plan .. 184
 7.2.1 Environment 184
 7.2.2 Partition 184
 7.3 Isolation Ward .. 186
 7.3.1 Ward .. 186
 7.3.2 Accessory Rooms 188
 7.3.3 People Flow and Goods Flow 189
 7.4 Clean Air Conditioner 191
 7.4.1 Particularity of Cleaning Air Conditioner for Isolation Ward .. 191
 7.4.2 Specific Requirement 192
 7.5 Positioning Arrangement of Air Openings 194
 7.5.1 Arrangement for Single Bed 194
 7.5.2 Arrangement for Multiple Beds 195
 7.5.3 Arrangement of Air Openings in Buffer Room 196
7.6 Determination of Pressure Difference and Differential Pressure Flow Rate
- 7.6.1 Pressure Difference ... 199
- 7.6.2 Differential Pressure Flow Rate 200
- 7.6.3 Expression of Pressure Difference 203

7.7 Design Case
- 7.7.1 Self-circulation System with Fan Coil Unit 210
- 7.7.2 Air Supply Outlet and Fan System 211
- 7.7.3 Air Supply Outlet and Indoor Self-circulation Fan System ... 211
- 7.7.4 Layout Plan for an Isolation Ward as an Example 213
- 7.7.5 Design Parameters 216

References .. 216
Dynamic Isolation Technologies in Negative Pressure Isolation Wards
Xu, Z.; Zhou, B.
2017, X, 216 p. 154 illus., 20 illus. in color., Hardcover
ISBN: 978-981-10-2922-6