Contents

1 Overview of Detection and Estimation of High-Speed Railway Catenary ......................................... 1
  1.1 Introduction .......................................... 1
  1.2 Pantograph-Catenary Detection Technologies ................. 1
  1.3 Development of Non-contact Detection Devices
      Using Image Processing .................................. 4
       1.3.1 Catenary Image Detection Device ................. 4
       1.3.2 Pantograph Image Detection Device .............. 7
  1.4 Pantograph-Catenary Image Recognition Technology ........... 8
  1.5 Catenary Estimation .................................... 12
       1.5.1 Static Estimation ................................. 13
       1.5.2 Dynamic Estimation .............................. 15
  1.6 Future Detection and Estimation Research ................... 17
References ................................................ 18

2 Statistical Characteristics of Pantograph-Catenary Contact Pressure .......................................... 23
  2.1 Introduction .......................................... 23
  2.2 Stationarity of Pantograph-Catenary Contact Pressure .......... 23
       2.2.1 Definition of Random Signal Stationarity .......... 23
       2.2.2 Stationarity Test Methods of Pantograph-Catenary Contact Pressure ................................. 24
       2.2.3 Stationarity Analysis of Actual Pantograph-Catenary Contact Pressure ................................. 29
  2.3 Periodicity of Pantograph-Catenary Contact Pressure .......... 31
       2.3.1 Periodic Trend Feature of Pantograph-Catenary Pressure .............................................. 31
       2.3.2 Trend Term Extraction of Pantograph-Catenary Contact Pressure ...................................... 33
       2.3.3 Evaluation of Pantograph-Catenary Contact Pressure ..................................................... 37
2.4 Correlation of Pantograph-Catenary Contact Pressure .. 38
  2.4.1 HHT and EEMD ..................................... 39
  2.4.2 Basic Correlation Characteristics
          of Pantograph-Catenary Contact Pressure ............. 41
  2.4.3 IMF Correlation Characteristics
          of Pantograph-Catenary Contact Pressure .............. 43
  2.4.4 IMF Correlation Measurement
          of Pantograph-Catenary Contact Pressure .............. 44
2.5 High-Order Statistical Properties of Pantograph-Catenary
          Contact Pressure ....................................... 48
  2.5.1 De
          finition and Computation Method of SK ............. 49
  2.5.2 SK of Pantograph-Catenary Contact Pressure .......... 50
2.6 Summary ............................................ 52
References ................................................ 53

3 Wave Motion Characteristic of Contact Line Considering Wind . 55
  3.1 Introduction .......................................... 55
  3.2 Wave Motion Equation of Catenary ........................ 56
  3.3 Wave Motion Velocity of Contact Line Considering
          Air Damping ............................................ 60
  3.4 Static Aerodynamic Parameters of Contact Line .......... 65
  3.5 Modification of Dynamic Equations of Pantograph-Catenary
          System Considering Air Damping ......................... 71
  3.6 Summary ............................................ 74
References ................................................ 75

4 Geometry Parameters Detection of Catenary Based on Image
          Processing ............................................... 77
  4.1 Introduction .......................................... 77
  4.2 Non-Contact Detection for the Height and Stagger
          of Contact Line ........................................ 77
  4.2.1 Field Image Acquisition of Contact Line ............. 78
  4.2.2 Pinhole Model Calibration of CCD Camera .......... 80
  4.2.3 Center Point Location of Laser Spot .................. 83
  4.2.4 Results Analysis of Experiments ..................... 85
  4.3 Detection Value Correction of Catenary Geometric
          Parameters Based on Kalman Filtering ................. 87
  4.3.1 Vibration Influence of Detection System
          and Compensation Method ............................... 87
  4.3.2 Correction Method of Contact Line Height ............. 90
  4.3.3 Result Analysis of Experiments ..................... 93
  4.4 Detection Method of Catenary Geometric Parameters
          Based on Mean Shift and Particle Filter Algorithm .... 95
  4.4.1 Data Model of Laser Spot ........................... 96
References ................................................ 97
5 Slide Plate Fault Detection of Pantograph Based on Image Processing

5.1 Introduction ................................................. 109
5.2 Features of Pantograph Slide Plate Image .......................... 110
  5.2.1 Pantograph Structure .................................. 110
  5.2.2 Pantograph Slide Plate Type ............................ 111
  5.2.3 Image Features of Pantograph Slide Plate .................. 111
5.3 Characteristics of Pantograph Slide Plate Image Based on Curvelet Transform .................................. 114
  5.3.1 Curvelet Transform .................................... 115
  5.3.2 Curvelet Coefficient Directional Projection Transform .... 119
  5.3.3 Characteristics of Pantograph Slide Plate Image ........... 123
5.4 Pantograph Slide Plate Crack Extraction Based on Translational Parallel Window in Curvelet Transform Domain ................................................. 126
  5.4.1 Extraction Algorithm of Cracks .......................... 126
  5.4.2 Experiment Verification .................................. 129
5.5 Detection of Slide Plate Cracks Based on CCDP Transform ...... 131
  5.5.1 Distinguishing Slide Plate Edge .......................... 132
  5.5.2 Distinguishing Slide Plate Joints ......................... 132
  5.5.3 Distinguishing Slide Plate Scratches ..................... 133
  5.5.4 Analysis of Slide Plate Cracks ......................... 133
  5.5.5 Detection Experiments .................................. 134
5.6 Summary ...................................................... 136
References ....................................................... 137

6 Detection of Catenary Support System ............................. 139
6.1 Introduction .................................................. 139
6.2 Image Acquisition ............................................ 139
6.3 Insulator Fault Detection ..................................... 140
  6.3.1 Insulator Positioning Based on Affine Invariant Moments ................................. 140
  6.3.2 Insulator Positioning Based on Fast Fuzzy Matching ........ 143
  6.3.3 Insulator Positioning Based on Harris Corner Points ....... 149
  6.3.4 Fault Detection Based on Grayscale Statistic ............... 155
  6.3.5 Fault Detection Based on Wavelet Singular Value .......... 161
  6.3.6 Fault Detection Based on Chan-Vese Model ................ 167
  6.3.7 Fault Detection Based on Curvelet Coefficients Morphology ................................. 175
6.4 Clevis Fault Detection .................................. 181
  6.4.1 Clevis Matching Based on SIFT ..................... 182
  6.4.2 Clevis Matching Based on SURF .................... 186
  6.4.3 Clevis Positioning Based on HOG ................... 189
  6.4.4 Clevis Positioning Based on Hough Transform ....... 194
  6.4.5 Fault Detection Based on Curvature .................. 199
  6.4.6 Fault Detection Based on Gabor Wavelet Transform ..... 203
  6.4.7 Fault Detection Based on Second Generation Curvelet .... 207
  6.4.8 Detection of Clevis Pins ........................... 210
6.5 Fault Detection of Diagonal Tube .......................... 219
  6.5.1 Diagonal Tube Detection Based on Cascaded AdaBoost Classifier ....................................... 219
  6.5.2 Detection of Loosening and Missing of Screws ........ 222
6.6 Summary ............................................ 229
References................................................ 230

7 Wire Irregularities Detection of Contact Line ................... 233
  7.1 Introduction .......................................... 233
  7.2 Times-Frequency Representation of PCCF ................... 235
  7.3 Detection Approach Description Based on ZAMD ............. 239
  7.4 Detection Approach Demonstration ............................................ 242
    7.4.1 TFR of Healthy PCCF ................................ 243
    7.4.2 Irregularity Detection of Unhealthy PCCF ............. 245
  7.5 Summary ............................................ 253
References................................................ 254

8 Estimation of Catenary Based on Spectrum .................... 255
  8.1 Introduction .......................................... 255
  8.2 PSD Estimation ....................................... 258
  8.3 PSD and Catenary Performance ........................... 262
    8.3.1 PSD of PCCF and Railway Line ..................... 262
    8.3.2 PSD of PCCF and Operation Speed ................... 266
    8.3.3 PSD of PCCF and Pantograph Type .................. 268
    8.3.4 PSD of PCCF and Wind Load ...................... 270
  8.4 PSD and Pantograph-Catenary Coupling Performance ........ 272
    8.4.1 PSDs of Vertical Displacements ..................... 273
    8.4.2 PSDs of Vertical Displacements and Operation Speed . 274
    8.4.3 PSDs of Vertical Displacements and Pantograph Type . 276
  8.5 PSD Quantification ..................................... 279
    8.5.1 Curve Fitting Method ............................. 279
    8.5.2 Fitting Results Analysis ........................... 282
  8.6 Summary ............................................ 286
References................................................ 286
Detection and Estimation Research of High-speed Railway Catenary
Liu, Z.
2017, XIV, 287 p. 238 illus., 162 illus. in color., Hardcover