Contents

Part I Introduction to Internetware

1 **Internetware: A Shift of Software Paradigm**
 1.1 Introduction 3
 1.2 The Internetware Paradigm. 4
 1.2.1 The Need of a Paradigm Shift. 4
 1.2.2 Methodological Reflections 5
 1.2.3 Architecting Principles for Internetware 7
 1.2.4 Our Roadmap and Explorations 8
 1.3 Open Coordination Model 8
 1.3.1 Coordination Model for Internetware 8
 1.3.2 A Software Architecture Based Approach 10
 1.4 Environment-Driven Model 11
 1.4.1 Structure and Dynamics 11
 1.4.2 Framework and Techniques 13
 1.5 Dependability Assurance Framework with Trust-Management 14
 1.5.1 A Trust-Based Approach 14
 1.5.2 A Dependability Assurance Framework with Trust Management 15
 1.6 Conclusion 15
References ... 16

2 **Technical Framework for Internetware: An Architecture Centric Approach** 19
 2.1 Introduction 19
 2.2 Software Model of Internetware 21
 2.2.1 Basic Component Model 22
 2.2.2 Open Collaboration Model 22
 2.2.3 Context Driven Model 23
 2.2.4 Intelligent Trustworthy Model 23
 2.3 Middleware for Internetware 23
 2.3.1 The Implementation Model of Basic Internetware Entities 24
 2.3.2 The Implementation Model of On-Demand Collaborations 24
 2.3.3 The Autonomic Management of Middleware 25
 2.3.4 Componentization of Middleware 25
2.4 Engineering Approach for Internetware
2.4.1 Software Architecture in the Whole Lifecycle
2.4.2 Development of Internetware Basic Entities and Their Collaborations
2.4.3 Domain Modeling for Internetware
2.5 Conclusion
References

Part II Internetware Software Model

3 On Environment-Driven Software Model for Internetware
3.1 Introduction
3.2 An Approach to the Environment-Driven Model
3.2.1 Overall Interaction Patterns of Environment-Driven Applications
3.2.2 A Structuring Model for Environment-Driven Applications
3.2.3 Model and System Characteristics
3.3 Environment Modeling and Enabling Techniques
3.3.1 Context Processing Framework
3.3.2 Ontology-Based Modeling of Dynamic Context
3.3.3 Logic Distance-Based Context Retrieval
3.3.4 Blurring Degree-Based Privacy Protection
3.3.5 Negotiation-Based Context Information Selection
3.4 Goal-Driven Adaptation and Rearon Ontologies
3.4.1 Rearon Ontologies
3.4.2 Overall Interaction Patterns of Environment-Driven Applications
3.5 Prototypes and Experiments
3.5.1 Artemis-ARC
3.5.2 Artemis-MAC
3.5.3 Artemis-FollowMeLite
3.5.4 Artemis-FollowMeAgent
3.5.5 Environment-Driven Applications
3.6 Related Work
3.7 Conclusion
References

4 On Self-adaptation Model for Internetware
4.1 Introduction
4.2 Approach Overview
4.3 Key Techniques
4.3.1 Basic SA Model
4.3.2 SA Reflection
4.3.3 SA Dynamism
4.3.4 SA Reasoning
6.5 Manipulation of Recovered Software Architecture at Runtime .. 131
6.5.1 Manipulation via Reflection 131
6.5.2 Programming Model 132
6.5.3 Graphical Tool .. 132
6.6 Performance Evaluation 134
6.7 Related Work ... 135
6.8 Conclusion and Future Work 136
References .. 137

7 Supporting Runtime Software Architecture:
A Bidirectional-Transformation-Based Approach 139
7.1 Introduction .. 140
7.2 Runtime Software Architecture 141
7.2.1 An Illustrative Example 141
7.2.2 A Formal Description of Runtime Software Architecture .. 142
7.3 Maintaining Causal Connections by Architecture-System Synchronization 144
7.3.1 The Four Properties 144
7.3.2 The Challenges 144
7.4 Architecture-System Synchronization Based on Bi-transformation 145
7.4.1 Enabling Techniques 145
7.4.2 The Synchronization Algorithm 146
7.4.3 Assumptions ... 149
7.4.4 Discussion About the Algorithm and the Properties .. 149
7.5 Generating Synchronizers for Legacy Systems 150
7.5.1 Implementing the Generic Synchronization Engine .. 151
7.5.2 Generating Specific XMI Parsers and System Adapters .. 151
7.6 Case Studies .. 152
7.6.1 C2-JOnAS .. 152
7.6.2 Client/Server-JOnAS 154
7.6.3 Other Case Studies 155
7.6.4 Summary and Discussion 155
7.7 Related Work ... 158
7.8 Conclusion .. 159
References .. 159

8 Low-Disruptive Dynamic Updating of Internetware Applications .. 163
8.1 Introduction .. 163
8.2 Dynamic Updating: Eager Versus Lazy 165
8.3 Javelus: Overview 166
8.4 Dynamic Patch Generation 167
8.4.1 Identifying Changed Classes 167
8.4.2 Default Transformation and Custom Transformers .. 168
9.8 Related Work ... 205
 9.8.1 Engineering Self-adaptive System 205
 9.8.2 Runtime Monitoring of Web Services 206
 9.8.3 Parametric Properties Monitoring
for OO Systems ... 207
9.9 Conclusion ... 207
References ... 208

10 Runtime Detection of the Concurrency Property
in Asynchronous Pervasive Computing Environments 211
10.1 Introduction ... 212
10.2 Property Detection for Pervasive Context 213
 10.2.1 Asynchronous Message Passing
and Logical Time ... 213
 10.2.2 Consistent Global State (CGS)
and the Lattice Structure Among CGSs 213
 10.2.3 Specification of Contextual Properties 214
10.3 Concurrent Activity Detection in Asynchronous
Pervasive Computing Environments 215
 10.3.1 \textit{Def} (\phi) and Concurrent Contextual
Activities ... 215
 10.3.2 Design of the CADA Algorithm 218
 10.3.3 Discussions ... 219
10.4 Performance Analysis ... 220
 10.4.1 The Causes of Faults .. 221
 10.4.2 Concurrency Among Sensed Activities 221
 10.4.3 Sensed and Physical Activities 223
 10.4.4 Discussions ... 224
10.5 Experimental Evaluation ... 224
 10.5.1 Implementation .. 224
 10.5.2 Experiment Setup .. 225
 10.5.3 Effects of Tuning the Update Interval 225
 10.5.4 Effects of Tuning the Message Delay 226
 10.5.5 Effects of Tuning the Duration
of Contextual Activities .. 227
 10.5.6 Effects of Tuning the Number
of Non-checker Processes 227
 10.5.7 Lessons Learned ... 227
10.6 Related Work ... 228
10.7 Conclusion ... 228
References ... 229

Part IV Internetware Engineering Approach

11 A Software Architecture Centric Engineering Approach
for Internetware ... 233
 11.1 Introduction ... 233
 11.2 Overview of ABC Methodology 236
 11.3 Feature Oriented Requirement Modeling
for Internetware ... 239
13.5 Three Verification Criteria
- 13.5.3 Three Verification Criteria

13.6 Design of High-Level Software Architecture
- 13.6.1 An Overview
- 13.6.2 Resource Container Identification
- 13.6.3 Component Seed Creation
- 13.6.4 Component Construction
- 13.6.5 Interaction Analysis

13.7 Related Work

13.8 Conclusions and Future Work

Appendix 1

Appendix 2

Appendix 3

References

14 rcos: A Refinement Calculus of Internetware Systems

14.1 Introduction

14.2 Semantic Basis
- 14.2.1 Programs as Designs
- 14.2.2 Refinement of Designs

14.3 Syntax of rcos
- 14.3.1 Commands
- 14.3.2 Expressions

14.4 Semantics
- 14.4.1 Structure, Value and Object
- 14.4.2 Static Semantics
- 14.4.3 Dynamic Variables
- 14.4.4 Dynamic States
- 14.4.5 Evaluation of Expressions
- 14.4.6 Semantics of Commands
- 14.4.7 Semantics of a Program

14.5 Object-Oriented Refinement
- 14.5.1 Object System Refinement
- 14.5.2 Structure Refinement

14.6 Refinement Rules

14.7 Conclusions
- 14.7.1 Related Work
- 14.7.2 Support UML-like Software Development
- 14.7.3 Limitation and Future Work

References

Part V Experiments and Practices of Internetware

15 Refactoring Android Java Code for On-Demand Computation Offloading

15.1 Introduction

15.2 Design Pattern for Computation Offloading
- 15.2.1 The Source Structure and the Target Structure
- 15.2.2 Refactoring Steps Overview
- 15.2.3 An Illustrative Example
15.3 Implementation of DPartner
 15.3.1 Detect Movable Classes
 15.3.2 Generate Proxies
 15.3.3 Transform App Classes
 15.3.4 Cluster App Classes
 15.3.5 Determine the Computations to Be Offloaded
 15.3.6 Offload Computations at Runtime
15.4 Evaluation
 15.4.1 Experiment Setup
 15.4.2 Performance of Refactoring
 15.4.3 Comparison of App Performance
 15.4.4 Comparison of App Power Consumption
 15.4.5 The Effect of On-Demand Offloading
 15.4.6 Experiments on 3G Network
15.5 Related Work
15.6 Conclusion and Future Work
References

16 Towards Architecture-Based Management of Platforms in Cloud
 16.1 Introduction
 16.2 Motivating Example
 16.3 An Architecture-Based Model for Platform Management in Cloud
 16.3.1 Approach Overview
 16.3.2 The Architecture-Based Meta-Model
 16.3.3 Runtime Changes
 16.4 Implementations of the Runtime Architecture-Based Model
 16.5 Evaluation
 16.5.1 Anti-pattern Detection
 16.5.2 VM States Checking
 16.6 Related Work
 16.7 Conclusion and Future Work
References

17 Golden Age: On Multi-source Software Update Propagation in Pervasive Networking Environments
 17.1 Introduction
 17.2 System Model
 17.3 Update Propagation Strategies
 17.3.1 Random Spread
 17.3.2 Youngest Age
 17.3.3 Golden Age
 17.4 Performance Analysis
 17.4.1 Notations and Assumptions
 17.4.2 Number of Updated Nodes in the System
 17.4.3 Principles for Choosing the Golden Age
Internetware
A New Software Paradigm for Internet Computing
Mei, H.; Lü, J.
2016, XXVIII, 442 p. 191 illus., 117 illus. in color., Hardcover
ISBN: 978-981-10-2545-7