Contents

1 Basic Models of Computational Mass Transfer 1
 1.1 Equation of Mass Conservation and Its Closure 3
 1.2 Turbulent Mass Diffusivity Model 6
 1.3 Conventional Turbulent Mass Diffusivity Model 6
 1.3.1 Turbulent Schmidt Number Model 6
 1.3.2 Inert Tracer Model 7
 1.4 $\bar{c}^2 - \bar{e}$ Model (Two-Equation Model) 7
 1.4.1 The \bar{c}^2 and \bar{e} Equations 8
 1.4.2 The $\bar{c}^2 - \bar{e}$ Model Equation Sets 17
 1.4.3 Determination of Boundary Conditions 21
 1.4.4 Experimental Verification of Model Prediction 24
 1.4.5 Analogy Between Transport Diffusivities 26
 1.4.6 Generalized Equations of Two-Equation Model 28
 1.5 Reynolds Mass Flux Model 29
 1.5.1 Standard Reynolds Mass Flux Model 29
 1.5.2 Hybrid Reynolds Mass Flux Model 37
 1.5.3 Algebraic Reynolds Mass Flux Model 38
 1.6 Simulation of Gas (Vapor)–Liquid Two-Phase Flow 39
 1.7 Model System of CMT Process Computation 45
 1.8 Summary .. 46

References ... 47

2 Application of Computational Mass Transfer (I) Distillation
 Process ... 51
 2.1 Tray Column 54
 2.1.1 $\bar{c}^2 - \bar{e}$ Two-Equation Model 54
 2.1.2 Reynolds Mass Flux Model 69
 2.1.3 Prediction of Multicomponent Point Efficiency 78
2.2 Packed Column 90
 2.2.1 $\varepsilon^2 - \varepsilon_c$ Two-Equation Model 90
 2.2.2 Reynolds Mass Flux Model 95
2.3 Separation of Benzene and Thiophene by Extractive Distillation ... 103
2.4 Summary .. 108
References ... 109

3 Application of Computational Mass Transfer (II) Chemical Absorption Process 111
 3.1 $\varepsilon^2 - \varepsilon_c$ Two-Equation Model 113
 3.1.1 Absorption of CO$_2$ by Aqueous MEA in Packed Column ... 118
 3.1.2 Absorption of CO$_2$ by Aqueous AMP in Packed Column ... 125
 3.1.3 Absorption of CO$_2$ by Aqueous NaOH in Packed Column ... 128
 3.2 Reynolds Mass Flux Model 134
 3.2.1 Absorption of CO$_2$ by Aqueous MEA in Packed Column ... 137
 3.2.2 The Absorption of CO$_2$ by Aqueous NaOH in Packed Column ... 144
 3.3 Summary .. 148
References ... 148

4 Application of Computational Mass Transfer (III)—Adsorption Process ... 151
 4.1 $\varepsilon^2 - \varepsilon_c$ Two-Equation Model for Gas Adsorption 154
 4.1.1 $\varepsilon^2 - \varepsilon_c$ Model Equations 154
 4.1.2 Boundary Conditions 157
 4.1.3 Evaluation of Source Terms 158
 4.1.4 Simulated Results and Verification 160
 4.1.5 Simulation for Desorption (Regeneration) and Verification ... 165
 4.2 Reynolds Mass Flux Model 167
 4.2.1 Model Equations 167
 4.2.2 Simulated Results and Verification 169
 4.2.3 Simulation for Desorption (Regeneration) and Verification ... 171
 4.3 Summary .. 173
References ... 173
5 Application of Computational Mass Transfer (IV)
Fixed-Bed Catalytic Reaction ... 175
 5.1 $\varepsilon^2 - \varepsilon_c$ Two-Equation Model for Catalytic Reactor 178
 5.1.1 Model Equation .. 178
 5.1.2 Boundary Conditions .. 182
 5.1.3 Determination of the Source Terms 182
 5.1.4 The Simulated Wall-Cooled Catalytic Reactor 183
 5.1.5 Simulated Result and Verification ... 185
 5.2 Reynolds Mass Flux Model for Catalytic Reactor 191
 5.2.1 Model Equations .. 191
 5.2.2 Simulated Result and Verification ... 194
 5.2.3 The Anisotropic Mass Diffusivity ... 197
 5.3 Summary .. 200
References .. 201

6 Application of Computational Mass Transfer (V) Fluidized
Chemical Process .. 203
 6.1 Flow Characteristics of Fluidized Bed 205
 6.2 $\varepsilon^2 - \varepsilon_c$ Two-Equation Model for Simulating Fluidized
 Process .. 208
 6.2.1 The Removal of CO$_2$ in Flue Gas in FFB Reactor 208
 6.2.2 Simulation of Ozone Decomposition in the Downer
 of CFB Reactor .. 219
 6.3 Reynolds Mass Flux Model for Simulating Fluidized
 Process .. 223
 6.3.1 Model Equations .. 223
 6.3.2 Simulation of the Riser in CFB Ozone
 Decomposition .. 227
 6.3.3 Simulation of the Downer in CFB Ozone
 Decomposition .. 237
 6.4 Summary .. 239
References .. 240

7 Mass Transfer in Multicomponent Systems 243
 7.1 Mass Transfer Rate in Two-Component (Binary) System 245
 7.2 Mass Transfer in Multicomponent System 251
 7.2.1 Generalized Fick’s Law ... 252
 7.2.2 Maxwell–Stefan Equation .. 252
 7.3 Application of Multicomponent Mass Transfer Equation 256
 7.3.1 Prediction of Point Efficiency of Tray Column 256
 7.3.2 Two-Regime Model for Point Efficiency
 Simulation .. 257
 7.3.3 Example of Simulation ... 261
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>Verification of Simulated Result</td>
<td>263</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Experimental Work</td>
<td>263</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Comparison of Simulation with Experimental</td>
<td>265</td>
</tr>
<tr>
<td>7.4.3</td>
<td>The Bizarre Phenomena of Multicomponent System</td>
<td>265</td>
</tr>
<tr>
<td>7.5</td>
<td>Determination of Vapor–Liquid Equilibrium Composition</td>
<td>268</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Thermodynamic Relationship of Nonideal Solution</td>
<td>268</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Prediction of Activity Coefficient: (1) Semi-empirical Equation</td>
<td>271</td>
</tr>
<tr>
<td>7.5.3</td>
<td>Prediction of Activity Coefficient (2) Group Contribution Method</td>
<td>275</td>
</tr>
<tr>
<td>7.5.4</td>
<td>Experimental Measurement of Activity Coefficient</td>
<td>278</td>
</tr>
<tr>
<td>7.6</td>
<td>Results and Discussion</td>
<td>280</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Correlation of the Phase Equilibrium</td>
<td>280</td>
</tr>
<tr>
<td>7.7</td>
<td>Summary</td>
<td>284</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>284</td>
</tr>
<tr>
<td>8</td>
<td>Micro Behaviors Around Rising Bubbles</td>
<td>287</td>
</tr>
<tr>
<td>8.1</td>
<td>Fluid Velocity Near the Bubble Interface</td>
<td>288</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Model Equation of Velocity Distribution Near a Rising Bubble</td>
<td>290</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Experimental Measurement and Comparison with Model Prediction</td>
<td>295</td>
</tr>
<tr>
<td>8.2</td>
<td>Concentration Field Around a Bubble</td>
<td>298</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Concentration at Bubble Interface</td>
<td>298</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Interfacial Mass Transfer</td>
<td>306</td>
</tr>
<tr>
<td>8.3</td>
<td>Discussion</td>
<td>309</td>
</tr>
<tr>
<td>8.4</td>
<td>Summary</td>
<td>309</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>310</td>
</tr>
<tr>
<td>9</td>
<td>Simulation of Interfacial Effect on Mass Transfer</td>
<td>311</td>
</tr>
<tr>
<td>9.1</td>
<td>The Interfacial Effect</td>
<td>313</td>
</tr>
<tr>
<td>9.2</td>
<td>Experimental Observation of Interfacial Structure Induced by Marangoni Convection</td>
<td>315</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Stagnant Liquid and Horizontal Gas Flow</td>
<td>316</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Horizontal Concurrent Flow of Liquid and Gas</td>
<td>318</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Vertical (Falling Film) Countercurrent Flow of Liquid and Gas</td>
<td>319</td>
</tr>
<tr>
<td>9.3</td>
<td>The Condition for Initiating Marangoni Convection</td>
<td>320</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Model Equations</td>
<td>321</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Stability Analysis</td>
<td>323</td>
</tr>
<tr>
<td>9.4</td>
<td>Mass Transfer Enhancement by Marangoni Convection</td>
<td>327</td>
</tr>
</tbody>
</table>
9.5 Experiment on the Mass Transfer Enhancement by Interfacial Marangoni Convection 330
 9.5.1 Absorption of CO\textsubscript{2} by Horizontal Stagnant Solvent ... 330
 9.5.2 Desorption of CO\textsubscript{2} by Falling Film Solvent 332
9.6 The Transition of Interfacial Structure from Order to Disorder .. 335
9.7 Theory of Mass Transfer with Consideration of Marangoni Effect ... 338
9.8 Simulation of Rayleigh Convection .. 343
 9.8.1 Mathematical Model .. 343
 9.8.2 Result of Simulation and Analysis 346
9.9 Experimental Measurement of Rayleigh Convection 352
9.10 Simulation and Observation of Two-Dimensional Solute Convection at Interface 360
 9.10.1 Simulation of Two-Dimensional Interfacial Concentration .. 360
 9.10.2 Experimental Observation of Interfacial Concentration Gradient .. 365
9.11 Marangoni Convection at Deformed Interface Under Simultaneous Mass and Heat Transfer 365
 9.11.1 Model Equations .. 366
 9.11.2 Generalization to Dimensionless 370
 9.11.3 Stability Analysis .. 372
9.12 Summary .. 376

References .. 376

10 Simulation of Interfacial Behaviors by the Lattice-Boltzmann Method .. 379
 10.1 Fundamentals of Lattice-Boltzmann Method 381
 10.1.1 From Lattice Gas Method to Lattice-Boltzmann Method .. 381
 10.1.2 Basic Equations of Lattice-Boltzmann Method 382
 10.1.3 Lattice-Boltzmann Method for Heat Transfer Process .. 389
 10.1.4 Lattice-Boltzmann Method for Mass Transfer Process 391
 10.2 Simulation of Solute Diffusion from Interface to the Bulk Liquid .. 392
 10.3 Fixed Point Interfacial Disturbance Model 394
 10.3.1 Single Local Point of Disturbance at Interface 394
 10.3.2 Influence of Physical Properties on the Solute Diffusion from Interface 395
Introduction to Computational Mass Transfer
With Applications to Chemical Engineering
Yu, K.-T.; Yuan, X.
2017, XII, 417 p. 283 illus., 83 illus. in color. With online files/update., Hardcover