Contents

1 Introduction and Paleogeographic Context, Previous Work, High-Resolution Scale, Magnetochronologic Perspective, Radiometric Scenario, Igneous Activities, Anoxic Events and Eustatic Fluctuations .. 1
 1.1 Introduction and Paleogeographic Context 1
 1.2 Rationale of the Study 5
 1.3 Previous Work .. 8
 1.4 Development of a Scale 15
 1.5 Radiometric Scenario 21
 1.6 Magnetostratigraphic Perspective 15
 1.7 Igneous Activities 21
 1.8 Oceanic Anoxic Events. 22
 1.9 Eustatic Fluctuations 22
References. .. 23

2 Mesozoic Stratigraphic Framework in India with Focus on the Jurassic Geological Record in the Kachchh Basin 27
 2.1 Origin of the Kachchh Basin 27
 2.1.1 Reactivation of the Precambrian Weak Zones 28
 2.1.2 Infrarift Sagging. 29
 2.1.3 Intra-Triassic Rift Initiation 29
 2.1.4 Early Non-marine Phase Prior to the Neotethyan Transgression. .. 29
 2.2 Salient Features in Brief Prior to the Mesozoic 30
 2.2.1 Intra-Devonian Origin of the Paleotethys 30
 2.2.2 Major, Widespread Gaps in India and Neighbourhood Prior as also During the Late Permian–Early Paleogene Mega-Sequence ... 30
 2.2.3 Widespread Basal Permian Extensional Tectonics, and Glaciation, Followed up Further by Major Transgressive Event. 32
2.2.4 Intra-Permian Origin of the Neotethys 32
2.2.5 Wide Spread Early/Late Permian Change in Inland Non-marine Gondwana Basins at the Start of the Mega-Sequence 33
2.2.6 Early/Late Permian Change in Marine Basins 34

2.3 Triassic .. 36
2.3.1 Triassic System—International and National Status 36
2.3.2 Development of Triassic in India 36
2.3.3 Triassic Succession in Spiti 36
2.3.4 Intra-Triassic Interstage Boundaries 37
2.3.5 Paleogeographic Framework at the Start of the Triassic Contextual to Kachchh 49
2.3.6 Suspected Presence of the Late Triassic in the Non-marine Nirona Formation as Encountered in Nirona and Banni Wells of Kachchh 50
2.3.7 Broad Stratigraphic Correlation of the Non-marine Nirona Formation to Non-marine Gondwana Units as also to Spiti Marine Units 50
2.3.8 Marine Triassic in Neighbourhood 50

2.4 Biostratigraphic Zonation in the Triassic 51
2.4.1 Ammonoid Zones in the Spiti Triassic 51
2.4.2 Conodont Zones in the Triassic of Spiti 51
2.4.3 Palynozones in the Non-marine Triassic 51

2.5 Salient Mid-Triassic Features 52
2.5.1 Biotic and Abiotic Changes Across the Mid-Triassic Anisian/Ladinian Boundary in Spiti 52
2.5.2 Mid-Triassic Unconformity and Associated Changes in Inland Gondwana Non-marine Basins as also in East and West Sector Coastal Basins 52
2.5.3 Intra-Triassic Localized Rifting/Igneous Event in India 53
2.5.4 Triassic Palyno-Record in the West Sector 53

2.6 Jurassic .. 53
2.6.1 Jurassic System—International and National Status 53
2.6.2 Development in the Indian Subcontinent 54
2.6.3 Outline of the Ammonoid Biogrographic Framework 54
2.6.4 Marine Jurassic in Jaisalmer 57
2.6.5 Marine Jurassic in High Himalaya with Focus in Spiti 57
2.6.6 Brief Summary of the Marine Jurassic in the Neighbouring Pakistan 58

2.7 Jurassic in Kachchh 66
2.7.1 Initiation of the Marine Transgression in Kachchh 66
2.7.2 Improbability of the Transgression in Early Pliensbachian During the Terminal Phase of Eustatic Fall 66
2.7.3 Oldest Jurassic Ammonoid Evidence 68
2.7.4 Oldest Jurassic Nannoplankton Evidence 68
2.7.5 Regional Evidence of the Early Toarcian Marine
Transgression .. 68
2.7.6 Jurassic Stratigraphic Record of Kachchh and
Neighbourhood 68
2.7.7 Lithostratigraphic Framework in the Jurassic of the
Kachchh Basin ... 69
2.7.8 Adoption of the Member Units of Biswas
and Others ... 72
2.7.9 Fundamentals of Stratigraphic Refinement and
Ammonoid Zonation 76
2.7.10 Lithostratigraphic Differentiation and Guide Fossil
Collection in the Field Followed by Systematic,
Bio- and Chrono-Stratigraphy in the Laboratory 76

2.8 Ammonoid Stratigraphic Refinement in Kachchh—Principal
Results at a Glance 79
2.8.1 Hettangian–Pliensbachian Record (Non-marine) 80
2.8.2 Toarcian–Aalenian Record (Largely Marine,
yet Ammonoid Devoid) 80
2.8.3 Bajocian .. 81
2.8.4 Bathonian .. 84
2.8.5 Callovian .. 90
2.8.6 Oxfordian .. 100
2.8.7 Kimmeridgian 110
2.8.8 Tithonian .. 120
2.8.9 Intra-Jurassic Interstage Boundaries 128

2.9 Cretaceous ... 130
2.9.1 International Status 130
2.9.2 Development in India 130
2.9.3 On the Local/Regional Stages in the Indian
Cretaceous .. 130
2.9.4 Integrated Indian Cretaceous Ammonoid Zonal
Succession ... 131
2.9.5 Exposed Cretaceous record in Kachchh and Jaisalmer .. 132
2.9.6 Subsurface and Offshore Record 134
2.9.7 Early Vis-à-Vis Late Cretaceous in Kachchh 134
2.9.8 Interstage Cretaceous Boundaries 134

References .. 138

3 Outcrop-Based Sequence Stratigraphic Studies on GTM
with Focus on the Kachchh Mesozoic 145
3.1 Sequence Stratigraphic Studies 145
3.1.1 Brief History of Sequence Stratigraphic Studies 145
3.1.2 Sequence Stratigraphic Studies on GTM 146
3.1.3 Update on Sequence Stratigraphic Studies
by the Author .. 147
3.2 Elements of the Depositional Sequences

3.2.1 Sequence Stratigraphic Surfaces, and Types of Unconformities at Sequence Boundaries

3.2.2 Shoreline Migration Processes

3.2.3 Terminology and Definitions

3.2.4 Parasequences as Building Blocks of the Sequences

3.2.5 Parasequence Stacking Patterns

3.2.6 Subaerial and Submarine Stratigraphic Gaps

3.2.7 Bathymetric Changes in Shallow Marine Near Coast Systems

3.2.8 Sequence Surfaces Versus Spatiotemporal Distribution of Ammonoids

3.2.9 Asymmetric Sequences in Context of Thickness

3.2.10 Bathymetric Changes and Ammonoid Heterochronic Evolution

3.2.11 Sediment Accumulation Rates, Facies and Their Depositional Environments

3.2.12 Biotic and Abiotic Parameters

3.2.13 Refined Chronostratigraphy—An Essential Requisite for Sequence Stratigraphic Studies

3.2.14 Sequence Stratigraphy as Here Understood

3.2.15 Rationale of Sequence Stratigraphic Studies

3.2.16 Uniformity of Sequences in Broadly Homogeneous Tectonostratigraphic Regions

3.2.17 Temporally Changing Geographical Extent of the Broadly Uniform Tectonostratigraphic Regions

3.2.18 Sequence Stratigraphic Studies in the Indian Geological Record

3.2.19 Applicative Attributes of the Sequence Stratigraphic Studies

3.2.20 Isochronous Surfaces of the T/R Sequences

3.3 The Mega Mesozoic Sequence and Its Three First-Order Sequences

3.3.1 T-I. Basal Triassic to Intra-induan Frequens Zone (Limestone + Shale Member) Second-Order Sequence

3.3.2 T-II. Basal Olenekian Rohilla Zone to Intraolenekian Flemingites-Eu Flemingites Zone Second-Order Sequence

3.3.3 T-III. Late Olenekian Meekoceras Zone–Early Ladinian Fassinian Curionii Zone Second-Order Sequence

3.3.4 T-IV. Intra-Ladinian Langobardian Gredlerensis Zone–late Early Ladinian Maclerni Zone) Second-Order Sequence
3.3.5 T-V. late Early Ladinian Sutherlandi Zone–Early Carnian Aon Zone (up to the Level BL 20) Second-Order Sequence .. 168

3.3.6 T-VI. Mid to late Early Carnian Second-Order Sequence .. 169

3.3.7 T-VII. Latest Early to Late Carnian Second-Order Sequence .. 169

3.3.8 T-VIII. Early Norian Second-Order Sequence .. 169

3.3.9 T-IX. Middle to Late Norian Second-Order Sequence .. 170

3.3.10 T-X. Rhaetian Second-Order Sequence ... 170

3.4 Sequence Stratigraphy in the Kachchh Jurassic ... 171

3.4.1 Advantage of Relative Subtemperate High Latitude Location of Kachchh for Greater Part of the First-Order Toarcian–Barremian (~ 56.40 my Long) Sequence .. 172

3.4.2 Domination of the Kachchh Ammonoid Fauna by a Single Subfamily in Each Second-Order Sequence .. 174

3.4.3 Auxiliary/Minor/Secondary Extraneous Elements Crucial for GTM/ETM Correlation .. 174

3.4.4 Strategic Significance of the Kachchh Mesozoic .. 174

3.4.5 Ammonoid Heterochrony also Used in Relative Chronometry .. 174

3.4.6 Geological Dynamics Through Outcrop Based Sequence Stratigraphic Studies in the Indian Mesozoic .. 174

3.4.7 Geographically Restricted GTM Ammonoid Subfamilies as Representative of Second-Order Sequences .. 174

3.4.8 Second-Order and Bigger Sequences Controlled by Regional Tectonics .. 175

3.4.9 Third-Order and Smaller Sequences Governed by Earth’s Orbital Dynamics and so Global .. 175

3.4.10 Origin of the Kachchh Basin and Principal Sequence Surfaces Between the Precambrian and the Time of Origin of the Kachchh Basin .. 175

3.4.11 SB of the Mega Order Sequence .. 176

3.5 First- to Third-Order Sequence Stratigraphy in the Kachchh Jurassic .. 177

3.5.1 J-I. Hettangian Second-Order ~ 2.0 my Long Sequence with Middle Hettangian Liasicus Zone MFS .. 179

3.5.2 J-II. Hettangian–Sinemurian Boundary to Rauricostatum Zone ~ 8.5 my Second-Order Sequence with Oxynotum Zone MFS .. 180

3.5.3 J-III. Latest Sinemurian to End Pliensbachian ~ 8 my Long Second-Order Sequence with Ibex Zone MFS .. 181
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Duration</th>
<th>MFS Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.4</td>
<td>J-IV. Second-Order Early Toarcian–End Aalenian</td>
<td>~12.5 my</td>
<td>in Nitiscens Zone</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>Second-Order Sequence of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.5</td>
<td>J-V. Basal Bajocian–Mid-Late Bajocian</td>
<td>~1.7 my</td>
<td>in Early Bajocian Propinquans Zone</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>Second-Order Sequence with MFS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.6</td>
<td>J-VI. Late Bajocian Garantiana Zone–Mid. Middle Bathonian</td>
<td>~1.5 my</td>
<td>in Early Bathonian Macrescens Subzone MFS</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Bathonian Morrisi Zone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.7</td>
<td>J-VII. Second-Order Late Middle Bathonian</td>
<td>~2.40 my</td>
<td>in Diadematus Subzone of Chrysoolithicus Zone</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>Mantataranus Zone / Bremeri Zone–O-I Horizon of Late Middle Callovian</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Obtusicosta Zone Obtusicosta Subzone Sequence of ~2.40 my Duration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>with MFS Above the Diadematus Subzone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.8</td>
<td>J-VIII. Late Middle Callovian O-II Horizon Obtusicosta</td>
<td>~2.1 my</td>
<td>in A-II Horizon Depressum Subzone Athleta Zone</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>Subzone Sequence of ~2.1 my Duration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.9</td>
<td>J-IX. Second-Order Obliqueplicatum Zone–Subevolutus</td>
<td>~4.8 my</td>
<td>in Late Middle Oxfordian Schilli Subzone of Orientalis Zone</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>Sequence with MFS Above the Late Middle Oxfordian Schilli Subzone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>of ~4.8 my Duration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.10</td>
<td>J-X. Second-Order Early Kimmeridgian</td>
<td>~2.0 my</td>
<td>in Kachchhensis Zone</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>Kachchhensis Zone–Mid. Early Kimmeridgian</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Giganticus Subzone Sequence of ~2.0 my Duration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>with MFS Above the Kachchhensis Zone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.11</td>
<td>J-XI. Second-Order late Early Kimmeridgian</td>
<td>~4.0 my</td>
<td>in Bathyplocus Zone</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>Alterneplicatus Zone–late Late Kimmeridgian</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Katrolensis Zone of ~4.0 my Duration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sequence with MFS Above the Bathyplocus Zone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.12</td>
<td>J-XII. Second-Order early Early Tithonian Pottingeri</td>
<td>~2.8 my</td>
<td>in Rajnathi Subzone of Virgatosphinctoides Zone</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>Zone–Virgatosphinctoides Zone Sequence of ~2.8 my Duration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>with MFS in Rajnathi Subzone of Virgatosphinctoides Zone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.13</td>
<td>J-XIII. Second-Order Natricoides Zone–Densiplicatus</td>
<td>~3.6 my</td>
<td>in Natricoides Zone</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>Zone Sequence of ~3.6 my Duration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.14</td>
<td>J-XIV. Terminal Part of Densiplicatus Zone</td>
<td>~400 ky</td>
<td>in Bed 19 A-B</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>Third-Order TST Of ~400 ky with MFS/MFI</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.6 Cretaceous ... 248

3.6.1 C-I. Early to Middle Berriasian Second-Order Sequence ... 250

3.6.2 C-II. Late Berriasian Second-Order Sequence .. 251

3.6.3 C-III. Valanginian Second-Order Sequence (beds 5–9 of the Ghuneri Member) in the Ghuneri–Amarsar Section ... 251

3.6.4 C-IV Hauterivian Second-Order Sequence (Beds 10–12 of the Ghuneri Member) in the Ghuneri–Amarsar Section ... 251

3.6.5 C-V Barremian Second-Order Sequence (Beds 13–14 of the Ghuneri Member) in the Ghuneri–Amarsar Section ... 252

3.6.6 C-VI. Early Aptian Deshayesites Zone–late Aptian Furcata Zone Second-Order Sequence of the Early part of the Ukra Member (Beds 15 and 16) ... 253

3.6.7 C-VII. Early to Middle Albian Second-Order Sequence (Bed 17 of the Ukra Member and Bed 18 of the Upper Member) ... 256

3.6.8 C-VIII. Late Albian–Middle Cenomanian Second-Order Sequence of Beds 19–22 of the Upper Member of Umia Formation ... 256

3.6.9 C-IX Late Cenomanian–Late Turonian Second-Order Sequence of the Upper Part of the Karai Formation/ Sattapadi Shale in the Wells and the Overlying Bhuvanagiri Formation ... 256

3.6.10 C-X. Coniacian–Santonian Second-Order Sequence with Intra-Coniacian MFS ... 256

3.6.11 C-XI. Late Campanian Second-Order Sequence with MFS Above the ?Early Campanian Delawarensis Zone ... 256

3.6.12 C-XII. Maestrichtian duration Second-Order Sequence with MFS Above the Early Maestrichtian Tridens Zone ... 257

3.7 Salient Features of the Indian Cretaceous Record ... 257

3.7.1 Intra- and Terminal Cretaceous Events Contextual to India ... 257

3.7.2 Application of Sequence Stratigraphy ... 257

3.7.3 Recent Independent Sequence Formulations in Different Indian Basins Vis-a-Vis Regional to Global Correlatibility of the Sequence Surfaces ... 258

3.7.4 Regional Uniformity of the Sequences ... 258

3.7.5 Differences of Ages Among Recent Sequence Formulations ... 259
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.6</td>
<td>Sequence Framework in the Indian Cretaceous</td>
<td>259</td>
</tr>
<tr>
<td>3.7.7</td>
<td>Foraminifer Evidence of yet Otherwise Unsubstantiated</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td>Presence of Late Cretaceous Stages in Kachchh</td>
<td></td>
</tr>
<tr>
<td>3.7.8</td>
<td>Speculation on Second-Order Late Albian–Early Cenomanian Sequence</td>
<td>259</td>
</tr>
<tr>
<td>3.7.9</td>
<td>Intra-Cretaceous First-Order SB with or Without Gap</td>
<td>260</td>
</tr>
<tr>
<td>3.7.10</td>
<td>Significant Difference in Ages of the Said Gaps</td>
<td>260</td>
</tr>
<tr>
<td>3.7.11</td>
<td>Creation of Indian Stages in Jurassic and Cretaceous—An Uncalled for Exercise</td>
<td>260</td>
</tr>
<tr>
<td>3.7.12</td>
<td>Summary</td>
<td>261</td>
</tr>
<tr>
<td>3.8</td>
<td>Scales of Cyclicity in the Kachchh Jurassic Geological Record</td>
<td>265</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Rationale of the Preliminary Exercise</td>
<td>265</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Asymmetric and Highly Uneven Duration of the Sequences and Stages</td>
<td>265</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Relatively Shorter Duration of the First-Order TSTs to Corresponding RSTs</td>
<td>266</td>
</tr>
<tr>
<td>3.8.4</td>
<td>Sequences, Periodicity and Durations</td>
<td>269</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>271</td>
</tr>
</tbody>
</table>

4 Integration of the Micro/Macro Faunal/Floral Data into Ammonoid Stratigraphic Framework in the Indian Mesozoics 277

4.1 Indian Lithobiostratigraphic Refinement, Correlation and Integration 278

4.1.1 The Indian Sedimentary Basins with Geological Record of the Mega-Sequence 278

4.1.2 On the Utilization of the Ammonoid Data 278

4.1.3 The Indian Mesozoic Lithostratigraphy Scenario 278

4.1.4 Biostratigraphic Range Charts 279

4.1.5 Integration of the Non-ammonoid Zonal Schemes to Ammonoid Schemes 279

4.1.6 Enlargement of the Stage Level Stratigraphic Record in the Mega-Sequence 280

4.1.7 Relative Degree of Stratigraphic Refinement Among the Three Mesozoic Systems in India 280

4.1.8 On the Benthic/Planktic Foram-Based Basinal/Regional Indian Stages 281

4.2 Microfossil-Based Zonations in the Indian Mesozoic 282

4.2.1 Integration of the Diverse Indian Biostratigraphic Record Vis-à-Vis Sequence Surfaces 283

4.2.2 Naming of Bio/Chronostratigraphic Zones Exclusively Through Their Basal Boundaries 284

4.3 On the Earlier Assigned Guide Fossil-Based Ages and Correlations in the Indian Mesozoic Successions 284

4.3.1 Bivalves 284

4.3.2 Conodonts 286
4.3.3 Foraminifers 287
4.3.4 Pollen–Spores and Dinocysts....................... 292
4.3.5 Nannoplanktons.................................. 295

4.4 Sequence Stratigraphic and Microfossil Zonal Integration in the West Indian Basins 301
4.4.1 Full Second-Order TST Substantiated Only Through the Ammonoid Record in Jaisalmer 302
4.4.2 Interpretation of the Saurashtra and Narmada Cretaceous Successions in Sequence Stratigraphic Context 302
4.4.3 Stratigraphic Framework in the Narmada Basin 303
4.4.4 West Indian Basins of Jaisalmer, Barmer, Cambay, Kachchh, Saurashtra, Narmada, Mumbai Offshore, and Kerala–Konkan .. 305
4.4.5 Lumping of Several Morphologically Close Species of the Bagh Succession Under Placenticeras mintoi 307
4.4.6 Post-Nimar Intra-Turonian Guide Fossil Records and Not Intra-Nimar 308
4.4.7 Late Cenomanian–Early Turonian Condensed to Starved Interval at Site 258 Leg 26 of the Indian Ocean 308
4.4.8 Evidence of Volcanism in the West Sector of the Indian Ocean ... 308
4.4.9 Demarcation of Important Cretaceous Sequence Surfaces in Kachchh and Elsewhere 309

4.5 Sequence Stratigraphy-Based Interpretations in the Bengal and Other East Sector Basins 309
4.5.1 The Important But Enigmatic Non-Marine Dubrajpur Formation in Bengal Basin Wells 309
4.5.2 Discrepancies About the Definition, Age and Geographical Expanse of the Dubrajpur Formation 311
4.5.3 Volcanism in the Bengal Basin 311
4.5.4 Volcanic Intervals in the Bengal Basin Boreholes 312
4.5.5 Bengal Basin Palynozones 312
4.5.6 Age Revision to the Bengal Basin Units and Palynozones Through Sequence Surfaces 313
4.5.7 Suggestive Ages to the Six Volcanic Intervals in the Bengal Basin Borehole DPD 6 313
4.5.8 On the Palynology-Based Sequence Stratigraphic Surfaces in the Indian East Coast Wells 315

4.6 Ranges of the Palynozones Through Sequence Surfaces (Fig. 2.42) ... 317
4.6.1 Pollen–Spore-Based Palynozones 317
4.6.2 Dinocysts ... 317

4.7 Application of Sequence Surfaces in Precision Dating of the Cretaceous Units in the East Sector 319
4.7.1 Cauvery Basin 319
4.7.2 K-G Basin .. 321
4.7.3 Other Indian East Coast Mahanadi, Purnea, Bengal, Assam and Andaman Basins .. 321
4.7.4 The Intra-Albian and Intra-Turonian MFSs in the Indian Basins .. 322
4.7.5 Demarcation of the First-Order Intra-Cretaceous MFS . . . 324
4.7.6 Correlations Among Cauvery, Spiti, and Kachchh Successions .. 324
4.7.7 Second-Order Surfaces in Between the Mid-Middle Albian MFS and the Above Interpreted First-Order MFS in Spiti and Kachchh .. 326
4.8 Salient Other Aspects of the Indian Mesozoic 327
4.8.1 Evaluation of the Lithobiostratigraphic Data of Jaisalmer and Barmer Basins 327
4.8.2 Comparative Evaluation of the Jurassic Member Units of Kachchh and Jaisalmer .. 328
4.8.3 Need of Formal Indian Working Groups for Each International Stage .. 330
4.8.4 Sequence Stratigraphy-Based Revised Ages to Formations and Members of the Kachchh Jurassic . . . 330
4.8.5 On the Intra-Oxfordian Uplift and Emergence of Mainland .. 341
4.9 Intrabasinal Correlations with Temporal and Spatial Extent of the Kachchh Mesozoic Formations and Members .. 343
4.9.1 Patcham Formation 344
4.9.2 Chari Formation 351
4.9.3 Katrol Formation 354
4.9.4 Umia Formation 355
4.9.5 Cretaceous 356
4.9.6 Mundhra Formation 357
4.9.7 Kori and Naliya Units 357
4.9.8 Recent Progress in the Age Assignments of the Oldest and Youngest Sediments in Different Parts of the Kachchh Basin .. 357
References .. 360

5 Applicability of the Sequence Framework in IEAP and GTM, with Brief Comments on the Hydrocarbon Prospects in the Indian Basins .. 367
5.1 Comparison with the Earlier Indian Frameworks 368
5.1.1 Initiation of Sequence Differentiation in India 368
5.1.2 Ammonoid-Based Sequence Stratigraphic Studies in the Indian Mesozoics .. 368
5.1.3 Sequences Without Précised SBs and MFSs 369
5.1.4 ONGC Sequence Framework 370
5.1.5 On the Efforts in the Kachchh Basin .. 372
5.2 Validation of the Present Sequence Framework in India, IEAP and GTM ... 372
 5.2.1 Broad Correspondence of the Indian and Arabian MFSs .. 373
 5.2.2 Basal Intra-Permian SB on IEAP and GTM ... 373
5.3 Comparison of the Indian Triassic, Jurassic, and Cretaceous Sequence Surfaces 375
 5.3.1 Comparison with Wombat Plateau ODP Well Sequence Framework off the NW Australian Margin Sites 759, 760, 761 and 764 East of IEAP 375
 5.3.2 Comparison with ETM Second-Order Sequence Framework .. 378
 5.3.3 Intra-Jurassic First-Order early Early Toarcian SB .. 379
 5.3.4 Intra-Jurassic First-Order late Middle Oxfordian Schilli Subzone MFS .. 379
 5.3.5 First-Order Intra-Cretaceous Barremian/Aptian Boundary SB .. 380
 5.3.6 Intra-Cretaceous early Middle Turonian Turoniense Zone MFS .. 380
 5.3.7 Early Bajocian Laeviuscula Zone MFS .. 381
 5.3.8 Early Bathonian Macrescens Subzone MFS ... 381
 5.3.9 Mid/late Middle Bathonian Basal Bremeri Zone SB .. 382
 5.3.10 Mid/late Early Callovian MFS ... 382
 5.3.11 On the Younger Jurassic Sequences in Jaisalmer and Spiti ... 382
5.4 Validation in Detail of the Indian Jurassic–Cretaceous Sequence Stratigraphic Framework on GTM West of India ... 384
 5.4.1 Comparison with Composite East Africa ... 384
 5.4.2 Comparison with the Morondova Basin of Madagascar .. 387
 5.4.3 Comparison of the Kachchh and Arabian Plate Sequence Stratigraphic Frameworks 403
5.5 Validation of the Kachchh First- and Second-Order Sequence Framework on GTM East of India ... 413
 5.5.1 Comparison with Wombat–Exmouth Plateaus and Dampier Basin Well Sections 413
 5.5.2 Iriyan Jaya ... 417
 5.5.3 Timor Gap ... 424
 5.5.4 Timor .. 425
 5.5.5 Sula ... 425
5.6 Sequence Stratigraphic Comparison of the Gondwanian Tethyan (GTM) and Eurasian Tethyan (ETM) Margins ... 426
 5.6.1 Basal SB of the Mega-Sequence ... 430
 5.6.2 Terminal SB of the Mega-Sequence ... 430
5.6.3 MFS of the Mega Sequence 431
5.6.4 First-Order Intra-Triassic MFS 431
5.6.5 First-Order Intra-Jurassic MFS 432
5.6.6 First-Order Intra-Jurassic SB 432
5.6.7 First-Order Intra-Cretaceous SB 432
5.6.8 Broad Comparison of the Sequence Frameworks of Kachchh on GTM with ETM Frameworks of Haq et al. (1987), Graciansky et al. (1993, 1998) 433
5.6.9 Long-Term TST on ETM and GTM 433
5.6.10 Second-Order MFSs of Haq et al., Jacquin et al., and Graciansky et al. 434
5.6.11 Diachrony and Differences in Second-Order MFSs Between ETM and GTM. 434
5.6.12 Diachrony and Differences in Second-Order SBs of ETM and GTM. 435
5.6.13 Intra-Bathonian Second-Order MFS 435
5.6.14 Intra-Bathonian Second-Order SB 435
5.6.15 Intra-Callovian MFS 436
5.6.16 Intra-Callovian SB 436
5.6.17 Intra-Oxfordian MFS 436
5.6.18 Intra-Oxfordian SB 436
5.6.19 Intra-Kimmeridgian MFS 437
5.6.20 Intra-Kimmeridgian SB 437
5.6.21 Intra-Tithonian MFS 437
5.6.22 Intra-Tithonian SB 437
5.6.23 Comparison of Principal Ammonoid Lineages 438
5.6.24 Summary of Comparison of Sequence Frameworks of GTM and ETM. 438
5.6.25 Comparison of Third-Order Sequences 439

5.7 Hydrocarbon Prospects in the Mega-Sequence Geological Record in India in Sequence Stratigraphic Context with Focus on the Kachchh Basin 439
5.7.1 Conceptual Remarks in Sequence Stratigraphic Context 439
5.7.2 Tectono-Stratigraphic Framework 440
5.7.3 Paleogeographic Perspective 442
5.7.4 Differentiation of Marine and Non-marine Regimes Within the Mega-Sequence in India 442
5.7.5 Temporal Organization into Syn-Rift, and Rift/Drift Intervals. 443
5.7.6 Regional Igneous Events Among the Required Heat Sources in the Hydrocarbon Source Sediment Kitchen 443
5.7.7 Availability of Restricted Depositional Environments 444
5.7.8 Context of Oceanic Anoxism Through the Mega-Sequence 444
5.7.9 Global and East Arabian / Northwest Australian Context 446

5.8 Summarized Evaluation of the Indian Hydrocarbon Prospects in the Mega-Sequence 446

5.8.1 On the Successive Second-Order Intervals of the Mega-Sequence 447

5.8.2 Late Permian–Anisian First-Order TST Interval 448

5.8.3 Ladinian–Pliensbachian First-Order RST Interval 449

5.8.4 Toarcian–late Middle Oxfordian TST Interval 449

5.8.5 Terminal Middle Oxfordian–Barremian First-Order RST Interval 452

5.8.6 Early Aptian–Mid-Middle Albian TST Interval 452

5.8.7 Cenomanian 453

5.8.8 Late Cenomanian–early-Middle Turonian TST Interval ... 454

5.8.9 Late Turonian–Intra-Paleocene First-Order RST Interval 454

5.9 Concluding Remarks 455

References.. 455

6 Crucial Links Among Evolution, Extensional Tectonics, Ammonoid Provincialism and Sequence Surfaces 461

6.1 Fossil Fuel/Energy Resources Vis-à-Vis Sequence Stratigraphic Surfaces 462

6.1.1 Permian and Paleogene Coal .. 462

6.1.2 Hydrocarbon Source/Reservoir Sediments 464

6.2 Cephalopod and Ammonoid Evolutionary Events 464

6.2.1 Global Distribution of Higher Grade Cephalopod/Ammonoid Taxa Vis-a-Vis Geographically Restricted Regional Spread of Ammonoids 465

6.2.2 Simultaneous Mass Extinctions Across the World and Diachronous Regional Extinctions 465

6.2.3 Five Major/Mass Extinctions ... 465

6.2.4 Mass Extinctions and Evolution of Cephalopods, Particularly, Ammonoids 466

6.2.5 Origin of the Nectic Cephalopods Near the First-Order Intra-Cambrian Sequence Surface 466

6.2.6 Cephalopod Evolution and Extinctions at Sequence Surfaces ... 466

6.2.7 Pre-Jurassic Ammonoid Evolution and Sequence Surfaces ... 467

6.3 Origin/Extinction of Subfamilies at Second-Order Sequence Surfaces ... 468

6.3.1 Early Jurassic Psiloceratidae and Others 468

6.3.2 Middle Jurassic Macrocephalitinae and Others 469
6.3.3 Late Jurassic Katroliceratinae and Others 472
6.3.4 Appearance/Disappearance of Superfamilies Linked to Bathymetry .. 472
6.3.5 Globally Concordant Third-Order Sequences 473
6.3.6 Replacement of Lineages at the First/Second-Order Sequence Surfaces 473
6.3.7 Subfamilial Origin/Extinctions in the Subboreal Region .. 475

6.4 Genetic Link Between the Origin/Extinction of Ammonoid Taxa and Extensional Tectonics 475
6.4.1 Origin/Extinction of Multiple Subfamilies and Superfamilies Triggered by Rift-Tectonism and Volcanism at First/Second-Order Sequence Surfaces 476
6.4.2 Tilt of the Median High at the Second-Order Intra-Callovian MFS ... 477
6.4.3 Rift Abortion Related Inversion of Bathymetry, and Change of Paleoslope 478

6.5 Crude Suggestion of Relative Depths Based upon Spatio-Temporal Distribution of Ammonoid Sub/Superfamilies in the Basin .. 478
6.5.1 Maximum Bathymetry Based on the Suborder Level Distribution .. 478
6.5.2 Depth Estimates Based on the Distribution of Superfamilies ... 479
6.5.3 Estimates Based Even at the Subclass Ammonoidea Level .. 479

6.6 Heterochronic Evolutionary Framework of the Dominant IEAP Ammonoid Subfamilies 482
6.6.1 Approach/Methodology to the Heterochronic Evolutionary Framework .. 482
6.6.2 Macrocephalitinae and Its Chrysoolithicus Lineage ... 483
6.6.3 Evolutionary Inversion of Macrocephalitinae at the 2nd Order MFS .. 484
6.6.4 Eucycloceratinae .. 485
6.6.5 Kinkelniceratinae .. 485
6.6.6 Mayaitinae ... 486
6.6.7 Katroliceratinae ... 487
6.6.8 Virgatosphinctinae .. 487
6.6.9 Examples of Paedomorphic and Peramorphic Heterochronic Evolution ... 488
6.6.10 Suggestive Genetic Link Between Heterochronic Evolutionary Changes and Sequence Stratigraphic Framework (Fig. 6.5) .. 491
6.7 Ammonoid Distribution, Provincialism and Migration
to and Fro IEAP .. 492
6.7.1 Salient Ammonoid Distribution Features During the
Toarcian–Barremian 1st Order Sequence Interval
with Focus on 2nd Order Sequences 493
6.7.2 Toarcian–Mid-Middle Bathonian 496
6.7.3 Late Middle Bathonian–Early Middle Callovian 496
6.7.4 Late Middle Callovian–Late Early Oxfordian 496
6.7.5 Late Early to Latest Late Oxfordian 496
6.7.6 Basal to Mid-Early Kimmeridgian 497
6.7.7 Late Early to Latest Kimmeridgian 497
6.7.8 Early Early to Mid-Early Tithonian 497
6.7.9 Late Early to late Late Tithonian 497
6.8 Speculative Linkage of Prime Evolutionary Landmarks to Major
Regional/Global Geological Events and Their Precision Dating
Through Sequence Surfaces 498
6.8.1 Intra-Permian Basal SB of the Mega-Sequence 498
6.8.2 Intra-Triassic First-Order MFS 500
6.8.3 Suggestive Origin of the Planktonic Forams
at the First-Order Intra-Jurassic SB 501
6.8.4 The Origin of Birds—The Flying Dinosaurs Near the
First-Order Intra-Jurassic MFS 501
6.8.5 Barremian/Aptian Boundary First-Order SB
Evolutionary Marks 502
References ... 502

7 High-Resolution Intrabasinal to Inter-regional Geodynamic
Chronicle During the Span of the Intra-Permian–Intra-Paleogene
Mega-Sequence in and Around India on the GTM 505
7.1 Backdrop to the Geodynamic Chronicle 506
7.1.1 Transformation from the Origin to the Closure of the
Late Permian–Early Paleogene Mega-Sequence 506
7.1.2 Sequence Surfaces as Regional Eventful Additional
Timelines to Date Events of One Sector in Some Other
Distant Sector .. 511
7.1.3 Predictable Spatio-Temporal Distribution of Biotic
and Abiotic Parameters Across the Sequence Surfaces
as also from Proximal Margin to Distal Basin
on the Individual Surfaces 517
7.1.4 Chronicle of the Events at the Subzonal Resolution
of ~ 400 ky or its Multiples 518
7.1.5 Unified Integrative Geodynamic History of the Indian Plate, and the Ammonoid Provinces, Corridor Seaways and the Related Oceans Included in the Tell-Tale 523
7.1.6 Constraints and Influence of the Inherent Precambrian Structural Trends in and Around India, and Progressive Refinement of the Size of Greater India 544

7.2 Sequence Stratigraphy Based Geodynamic Chronicle 545
7.2.1 Brief Outline 546
7.2.2 Basal to Intra-Permian Infra-Rift Sagging to Syn-rift Transition Event in the East 547
7.2.3 Early Permian–Middle Triassic Igneous Event
(~ 289 to ~ 243 ma) with Climax at the Second-Order Sakmarians/Artinskians MFS of the Intra-Devonian–Early Permian First-Order Sequence 549
7.2.4 Possible Earlier Origin of the Neotethys 550

7.3 The Spitiian First-Order Sequence 552
7.3.1 Early/Late Permian (~ 272 ma) Basal Mega SB Geological Event 553
7.3.2 Anoxic Events Vis-à-Vis Sequence Stratigraphic Surfaces 554
7.3.3 Mega-Sequence Surfaces and the Indian Energy Resources (Fig. 7.5) 554
7.3.4 The End-Permian Mass Extinction at the Second-Order SB, and Its Varied Causes 555
7.3.5 Major Organic Evolution Events Suggestively Linked to the First-Order Sequence Surfaces 556
7.3.6 Example of Quantum Evolutionary Steps in Cephalopods/Ammonoids 556
7.3.7 Major Evolutionary Leaps of Higher Grade Taxa in the Animals and Plants 557

7.4 First-Order Intra-Triassic Late Anisian Hollandite Zone–Kellnerites Zone MFS Rifting Event 558
7.4.1 Early Triassic Bathymetric Increase in Spiti Vis-à-Vis Eustatic Changes During the Intra-Olenekian–Intra-Carnian Interval 561
7.4.2 Application of Sequence Stratigraphic Concepts and Sequence Surfaces in Correlation of Marine and Non-marine Units 562
7.4.3 Regional Build-up of Sands in the Ensuing First-Order RST 562

7.5 The Kachchhian First-Order Sequence 563
7.5.1 The Multifaceted Widespread First-Order Intra-Jurassic SB Geological Event 563
7.5.2 Suggestive Origin of the Planktic Forams at the First-Order Intra-Jurassic SB 563
7.5.3 Igneous Activity at the Intra-Jurassic First-Order SB Near the Start of Toarcian 564
7.5.4 Widespread and Significant Rifting on the NW Australian Margin at the Intra-Jurassic Pliensbachian/Toarcian Boundary First-Order SB Geological Event 565
7.5.5 Suspected Coeval Volcanism in Gujarat 566
7.5.6 Age of the Sediments of Pre and Post Lodhika Volcanism Interval in the Lodhika and Dhandhuka Wells of Saurashtra Basin 566
7.5.7 Stratigraphic Homotaxiality in Kachchh and Saurashtra Successions 567
7.5.8 Similarly Positioned and Age-Constrained Volcanic Units in the West Sector 567
7.5.9 Pre-Toarcian Similarity of the Mesozoic Successions at Mozambique, Seychelles, Madagascar, Pakistan, and Saurashtra 568
7.5.10 Probable Age of the Lodhika and Dhanduka Trap Formation .. 569
7.5.11 So Called Origin of the Proto-Indian Ocean in the East and West Sectors 569
7.5.12 Stratigraphically Similarly Positioned Marine Incursions in Mozambique and Saurashtra 570
7.5.13 Origin of the Saurashtra Basin 570
7.5.14 Onset of the Transgression in Kachchh and Elsewhere on GTM .. 571
7.5.15 Tectono-Stratigraphic Evolution in the Kachchh Basin in the Second-Order Sequence Stratigraphic Context 571
7.5.16 Lithological Evidence of Rift-Genic Early Bajocian, and Early Middle Bathonian Submergences at Successive Second-Order MFSs 571
7.5.17 Transform Sliding of India Vis-à-Vis Africa Along the North–South-Directed Davies Fracture Zone During the First-Order TST 574
7.5.18 Drowning of the Carbonate Platform in High Himalaya .. 577
7.5.19 Mid/Late Middle Bathonian Second-order SB Event .. 578
7.5.20 Origin of the Geographically Restricted IEAP Ammonoid Subfamilies/Lineages at the Mid/Late Middle Bathonian Second-Order SB 578
7.5.21 Arrival of Macrocephalitinae Under Increased Bathymetry in Kachchh from SW Pacific 578
7.5.22 First Marked Presence of Ammonoids in Goradongar 579
7.5.23 Mid/Late Early Callovian Chrysoolithicus Zone Diadematus Zone Second-Order MFS Event 579
7.5.24 Middle Callovian O-I Horizon Obtusicosta Subzone Second-Order SB Event 581
7.5.25 Early Late Callovian Athleta Zone Depressum Subzone Second-Order MFS Event 581
7.5.26 On the Middle/Late Jurassic Boundary Cooling Event .. 581
7.5.27 Climatic and Bathymetric Barrier Between IEAP and Arabia at the Second-Order Intra-Callovian SB 584
7.5.28 Land Barrier Between IEAP and South Pacific Mozambique ... 584
7.5.29 Early/Late Early Oxfordian Second-Order SB 585
7.5.30 Late Middle Oxfordian Orientalis Zone Schilli Subzone first-Order MFS Event 587
7.5.31 Other Facets of the Intra-Oxfordian First-Order MFS Event ... 588
7.5.32 Maximum Phanerozoic Bathymetry Ever in the Kachchh Basin at the Intra-Oxfordian First-Order MFS 590
7.5.33 Strong Condensation and Starvation ... 590
7.5.34 Sandy Regimes During the First-Order TST .. 590
7.5.35 Terminal Middle Oxfordian–Mid-Middle Kimmeridgian Second-Order Sequence 591
7.5.36 Unique Scenario of Starvation/Non-deposition in the Distal Mainland and Shallow Marine Thick Sand Deposition in the Proximal Wagad .. 591
7.5.37 Origin of the ‘Proto-Indian Ocean’ at the North Extreme of the East Sector, with Spreading Away of Argo Block, also Similar Scenario in the Africa–Patagonia Region 591
7.5.38 Involvement of the Kerguelen Plume not Supported in the Initial Late Jurassic Volcanism 592
7.5.39 Significant Radiometric Ages of the Igneous Rocks on the Said Spreading in the East and North Sectors 593
7.5.40 Volcanoclasts in the Tethyan Late Jurassic Sediments Related to Possible Penepcontemporaneous Volcanism .. 595
7.5.41 Magnetic Anomaly Evidence ... 596
7.5.42 Interpretation of a Single Interactive Spreading Framework on the GTM 596
7.5.43 Sequence Surface Based Precise Ages in the Backdrop of Tentativeness of Radiometric Ages 597
7.5.44 Disagreement with Late Jurassic Separation and Spreading Away of the Entire Tethys Himalaya from Greater India .. 598
On the Possibility of yet Older Localized Spreading in the West Sector .. 598
Wide Spread Ammonoid and Other Evidences of Large Gap in India .. 598
Widespread Evidences of Large Submarine Gap from Arabia to India on GTM ... 599
GTM First-Order Intra-Oxfordian MFS Event Considered More Important in Global Context Compared to the Corresponding ETM First-Order Intra-Kimmeridgian MFS Event .. 599
Suspected Magnetic Polarity Reversal at the Intra-Oxfordian MFS Event ... 600
Rich Hydrocarbon Source Sediments in the Vertical Proximity of the First-Order MFS 600
See-Saw Tectonics of Alternate up and Down Tilting (Down at the Active Margin with Complimentary Cogenetic Tilting up at the Passive/Hind Margin) 601
Absence of Substantial Part of Jurassic in Non-marine Basins .. 601
Sequence Stratigraphic Context of the Gap in the Non-marine Gondwana Basins .. 602
Abortion of Rifting, and Reversal of Paleoslope/Drainage/Current at the First-Order MFS 602
Shift of Action from West and Northwest to East and Southeast ... 604
Myanmar Shoshonite as Evidence of Tectonic-Cum-Igneous Event at ~ 159 ma MFS 606
An Arm of the Neotethys in the East Divergent Sector .. 607
Possible Arms of the South Pacific in the South Africa–Antarctica–South America Region 607
Desirability of Investigating Possible Anoxic Signatures at the Intra-oxfordian first-Order MFS 608
Graded Withdrawal of the Neotethys from Kachchh and the Associated Recede of the Shoreline 608
Mid/Late Early Kimmeridgian Second-Order SB ... 609
Relative Faster Bathymetric Increase During Oxfordian up to First-Order MFS Than Decrease up to Mid-Late Kimmeridgian Second-Order MFS ... 609
Unique ~ Four to Six to Eight My Long Duration of Submergence in Mainland, yet Deprived of Sediments .. 609
Mid / late Late Kimmeridgian Post Bathyplocus Zone Linguiferus Subzone Second-Order MFS 610
Mid Early Tithonian Post Rajnathi Subzone Second-Order MFS .. 610
7.5.66 Origin of the Intra-Gondwana Gondic Shallow Marine Corridor Across the Gondwana at the Intra-Tithonian Second-Order MFS ... 612
7.5.67 Possible Volcanic Episode in Bengal Basin at the Late Tithonian / Early Valanginian MFS in the East Sector ... 612
7.5.68 Duration of the Multiple Stage Mesozoic Volcanism in the East Divergent Sector 615
7.5.69 Early Berriasian Second-Order MFS Event 616
7.5.70 Late Berriasian Second-Order MFS Event 617
7.5.71 Early Late Valanginian Second-Order Verrucosum Zone MFS ... 617
7.5.72 Wider Expanse of Volcanism After the Shift of the Spreading Ridge .. 618
7.5.73 Wide Spread Terminal Dominantly Regressive Sandy Regime with Initiation at the Intra-Valanginian Second-Order MFS ... 619
7.5.74 Speculative Differentiation of A ~2.8 my Long Second-Order TST of Nearly Full Hauterivian Stage Widely on the GTM Between Arabia and India (Spiti, Kachchh and K-G) 619
7.5.75 Younging of the Successive Sandy RSTs in the First-Order Latest Middle Oxfordian to Late Barremian RST from Margin to Basin ... 621
7.5.76 Pattern of Migration of Sandy Facies in the Basin During the Toarcian–Barremian First-Order Sequence ... 621
7.5.77 Age Range of the Syn-rift Succession in the K-G Basin Subsurface Wells Through Sequence Surfaces 622
7.5.78 On the Short Convergence Interpreted Near the Hauterivian/Barremian Boundary 623
7.5.79 End Barremian First-Order SB Event 624
7.6 The Dravidian First-Order Sequence: Aptian–Intra-Paleogene 624
7.6.1 Graded Reduction in the Extent of the GTM After the Initiation of Spreading Away of Antarcto-Australia in the East and Spreading Away of the South America in the West with Respective Origin of the Indian and Atlantic Oceans .. 624
7.6.2 Basal Early Aptian First-Order SB Event 625
7.6.3 Final/Late Phase (~126 to ~107 ma) of the Volcanism East of India Between the Basal Aptian–mid-Middle Albian Interval with Peak in Late Aptian (~118 to ~114 ma) ... 626
7.6.4 Origin of Bay of Bengal Based on Magnetic Anomalies from Indian Ocean in the East 626
7.6.5 Subduction of the Volcanic Island Arc in the North Linked to Final Phase of Volcanism Between Antarctica and India ... 627
7.6.6 Culmination of the Tectonic Unzipping Between the Axial and Outer Gondwana ... 628
7.6.7 Igneous Evidence of Rifting / Island-arc Framework / Subduction in Other Sectors of the Indian Plate Margin Near the First-Order Barremian/Aptian Boundary SB up to the mid-Middle Albian MFS ... 630
7.6.8 Early Early Aptian–mid-Middle Albian First/Second-Order TST in Kachchh of the First-Order Terminal Mesozoic Sequence .. 635
7.6.9 Intra-Cretaceous Intra/Inter Plate Reorganization Event .. 636
7.6.10 Counterclockwise Rotation of India ... 638
7.6.11 On the Possible Middle Albian Gap in the Indian Basins ... 638

7.7 Intra-Turonian MFS in the Indian Basins .. 639
7.7.1 Slow Somewhat Condensed Early Aptian–mid-Middle Albian TST of Ukra and Coeval Units Compared to the Overlying Cenomanian in Kachchh, Jaisalmer, and Pakistan .. 640
7.7.2 Turonian Transgression in Narmada and Saurashtra .. 640
7.7.3 Similar Pattern of Possible Decrease of Bathymetry Across the mid-Middle Albian MFS in Spiti High Himalaya .. 640
7.7.4 Late Cenomanian–Early Middle Turonian Condensation in High Himalaya Down the Dip from South to North .. 641
7.7.5 Not that Explicit Picture in the Cauvery Basin .. 641
7.7.6 Ambiguity in the Determination of the First-Order Intra-Cretaceous MFS .. 642
7.7.7 Anoxic Events in the Mega-Sequence .. 642
7.7.8 Albian Succession and the Evidences of the Middle Albian Anoxic Event in India .. 643
7.7.9 OAE Determination in Spiti .. 644
7.7.10 Mid-Middle Albian MFS Anoxic Event in Cauvery .. 644
7.7.11 Asymmetric Inferior Fourth- to Sixth-Order Sequences in the Kachchh Mesozoic .. 645
7.7.12 Possible Gap Between the Umia Formation Below and the Mundra/Naliya Units Above in Offshore Wells .. 646
7.7.13 Presence of Thin Basalt Layers in a Few Offshore Wells .. 647
7.7.14 Possible Convergence of NW India to Either SE Arabia or Kohistan–Ladakh Arc .. 649
7.7.39 Change in the Direction of Drift Prior
to the Intra-Turonian MFS 669
7.7.40 The Break-up Among the Axial Gondwana
Constituents. .. 670
7.7.41 Precise Age of the Break-up Unconformity 670
7.7.42 Deccan and Coeval Volcanism, and Oceanic Separation
of Seychelles from India 670
7.7.43 Subaereal Stratigraphic Gaps in the Studied Spiti,
Kachchh, Cauvery and Other Indian Basins
Contextual to the Studied Mega-Sequence 671
7.7.44 Submarine Stratigraphic Gaps 671
7.7.45 Intertrappean Sediments and Volcanoclasts
as Age Evidence of Deccan Igneous Activity 672
7.8 Terminal SB of the Mega-Sequence in Intra-Paleogene 672
7.8.1 Conceptual Closure of the Mega-Sequence 672
7.8.2 Varying Ages of the Docking of India into Asia Soon
After the Conceptual Intra-Paleocene Closure of the
Mega-Sequence SB 673
7.8.3 Initial Impingement 673
7.8.4 Convergence of the Initial Impingement
in a Short Range 674
7.8.5 Possible Relevance of Sequence Surfaces to the Initial
Impingement in Particular and the Protracted
Amalgamation in General 675
7.9 Terminal Priabonian First-Order ~ 34 ma SB in the Indian
Cenozoic .. 678
7.10 Summarised Re-enaction of the Succession of Multifaceted
Geological Events ... 679
References .. 681
The Indian Mesozoic Chronicle
Sequence Stratigraphic Approach
Krishna, J.
2017, LXI, 694 p. 210 illus., Hardcover
ISBN: 978-981-10-2476-4