Contents

Part I Basics

1 Geology .. 3
 1.1 Categories of Rock .. 3
 1.1.1 Igneous Rocks 3
 1.1.2 Sedimentary Rocks 6
 1.1.3 Metamorphic Rocks 8
 1.2 Properties of Rock .. 10
 1.3 Geological Structures of Rock Mass 15
 1.3.1 Folds ... 17
 1.3.2 Faults ... 18
 1.3.3 Discontinuities: Bedding Planes, Joints,
 and Fractures 20
 1.3.4 The Compound Structures—Unconformities 23
 1.3.5 Geometric Representation of Structural Elements 23
 1.4 Properties of Rock Mass and Their Effects to Rock
 Excavation .. 27
 1.4.1 Characterization of Discontinuities in a Rock Mass .. 29
 1.4.2 Field Investigations on Rock Mass Properties 31
 1.4.3 Groundwater 31
 1.4.4 The Effects of Rock Mass Properties
 to the Excavation 32
 1.5 Classification of Rock Sturdiness 36
 1.5.1 Protodyakonov’s Rock Classification 37
 1.5.2 “Three in One” Comprehensive Classification
 of Rock Mass 40
 1.5.3 China’s “Standard for Engineering Classification
 of Rock Masses” GB50218-2014 41

References .. 47
2 Rock Drilling

2.1 Mechanism of Rock Breakage by Drilling and Drillability of Rock

2.1.1 Mechanism of Rock Breakage During Drilling

2.1.2 Drillability of Rock and Its Classification

2.2 Classification of Drilling Machines

2.2.1 Classification on Drilling Manner

2.3 Classification on Drilling Methods

2.4 Rotary-Percussive Drilling

2.4.1 Top Hammer Drilling

2.4.2 Down-the-Hole (DTH) Drilling

2.5 Rotary Drilling

2.5.1 Rotary Drilling with Rolling Tricone Bits

2.5.2 Rotary Drilling with Drag Bits

2.6 Rotary-Percussive Drilling Accessories

2.7 Selection of Rock Drill and Accessories

2.7.1 Fields of Application for Different Drilling Methods

2.7.2 Principles of Selection of Drilling Equipment for Surface Excavation

2.7.3 Selection of Drilling Equipment for Underground Excavation

2.7.4 Selection of Drilling Accessories

References

3 Explosives

3.1 History of Explosives Development

3.2 Characters of Explosion of Explosives

3.3 Types of Chemical Decomposition of Explosives and the Detonation Process

3.3.1 Types of Chemical Decomposition of Explosives

3.3.2 Detonation Process of an Explosive

3.4 Oxygen Balance of Explosives

3.5 Thermochemistry of Explosives

3.5.1 Detonation Heat of Explosives

3.5.2 Detonation Temperature of Explosives

3.5.3 Detonation Volume of Explosives
3.5.4 Detonation Pressure and Velocity of Detonation of Explosives .. 126
3.6 Classification of Explosives .. 127
3.6.1 Classification by Composition 127
3.6.2 Classification by Sensitivity 128
3.6.3 Classification by Detonation Velocity 128
3.6.4 Classification by Purpose (Application) 129
3.6.5 Classification by IMDG Code 130
3.7 Properties of Explosives ... 132
3.7.1 Density ... 132
3.7.2 Strength and Energy 136
3.7.3 Sympathetic Detonation 141
3.7.4 Sensitivity ... 142
3.7.5 Water Resistance 143
3.7.6 Fumes and Fume Classification 144
3.7.7 Desensitization 147
3.7.8 Stability and Shelf Life for Storage 148
3.8 Commercial Explosives (Industrial Explosives) 149
3.8.1 Nitroglycerin (NG)-Based Explosives 150
3.8.2 AN-TNT-Based Explosives—Ammonite 152
3.8.3 Water-Based Explosives 156
3.8.4 Bulk Blasting Agent 161
References .. 169

4 Initiation System ... 171
4.1 Detonators ... 171
4.1.1 Brief History on Detonators 171
4.1.2 Plain Detonators and Safety Fuses 173
4.1.3 Electric Detonators 177
4.1.4 Electromagnetic Detonators 184
4.1.5 Shock Tube Detonators (Nonel System) 185
4.1.6 Electronic (Digital) Detonators 194
4.2 Detonating Cord ... 197
4.3 Cast Boosters .. 201
References .. 202

5 Mechanisms of Rock Breakage by Blasting 205
5.1 Shock Wave and Stress Wave in Rock Generated by Explosion 205
5.1.1 Shock Wave and Stress Wave 205
5.1.2 Types of Stress Wave 205
5.1.3 Reflection of Stress Wave from a Free Face 206
5.2 Mechanism of Rock Breakage by Blasting 207
5.2.1 Crushed Zone Produced by Shock Waves 208
5.2.2 Radial Cracking Zone Produced by Stress Waves 209
5.2.3 Reflection of Stress Waves from Free Face............. 210
5.2.4 Role of the Explosion Gases 210
5.3 Explosive’s Energy Distribution During Rock Blasting
and Livingston’s Blasting Crater Theory 214
5.3.1 Explosive’s Energy Distribution During Rock
Blasting .. 214
5.3.2 Livingston’s Crater Blasting Theory 214
5.4 Rock Classification by Blastability 218
5.4.1 Rock Blastability and Its Effective Factors 218
5.4.2 Criterion of Rock Classification by Blastability 223
5.4.3 Rock Classification by Blastability 225
References .. 233

6 Blasting Assessment Report ... 235
6.1 Desk Study .. 235
6.1.1 Gathering Information from Relevant Authorities 235
6.1.2 Identification of the Area Which Will Be Affected
by the Blasting Works 236
6.1.3 Contact and Collect Necessary Information
from All Units Within the Affected Area
by the Excavation Work 236
6.1.4 Collect Necessary Information About Existing
Geotechnical Features, Meteorological, and
Hydrogeological Data 237
6.2 Field Investigation and Condition Survey 237
6.2.1 Investigation, Including Photography
and Surveying, of the Current Condition
of All Facilities Within the Zone of Influence
by Blasting .. 237
6.2.2 Field Investigation of All Geotechnical and
Geological Features Within the Zone of Influence
by Blasting .. 238
6.2.3 Records of Existing Defects 238
6.3 Analysis of the Potential Influence of Blasting Works
to the Environment ... 239
6.3.1 Environment Impact Assessment (EIA)
for the Transport and Storage of Explosives 239
6.3.2 Potential Risk of Blasting Flyrock 239
6.3.3 Influence of Blasting Vibration 240
6.3.4 Influence of the Air Overpressure Produced
by Blasting ... 243
6.3.5 Arrangement of the Monitoring Points
for All Sensitive Receivers 245
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>Proposals for Elimination or Controlling the Adverse Influences</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Protective Measures for Prevent Blasting Flyrock</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Limitation of Blasting Vibration for All Protective Objects and Its Controls</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Limitation of Air Overpressure</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Equipment for Monitoring</td>
</tr>
<tr>
<td>6.4.5</td>
<td>Levels of Alert, Action, and Alarm of Blasting Vibration and AOP and Corresponding Requirements and Measurement</td>
</tr>
<tr>
<td>6.5</td>
<td>Methodology of the Excavation by Blasting</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Arrangement of Excavation Process</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Working Scale, Excavation Method, and Main Equipment</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Explosives to Be Used in the Project and the Outline of Blasting Design</td>
</tr>
<tr>
<td>6.5.4</td>
<td>Security Measures, Scope of Safe Evacuation, and Evacuation Program</td>
</tr>
<tr>
<td>6.5.5</td>
<td>Assessment of the Feasibility of an On-Site Explosive Magazine, and Its Arrangement and Security Measures</td>
</tr>
<tr>
<td>Annex:</td>
<td>Contents of a Blasting Assessment</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
</tbody>
</table>

Part II Surface Excavation

7 Non-blasting Excavation

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Manual Splitting and Hydraulic Rock Breaker</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Manual Splitting</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Hydraulic Hammer Breaker</td>
</tr>
<tr>
<td>7.2</td>
<td>Hydraulic Rock Splitters</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Wedge-Type Hydraulic Splitters</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Piston-Type Hydraulic Rock Splitter</td>
</tr>
<tr>
<td>7.3</td>
<td>Non-explosive Cracking Agent</td>
</tr>
<tr>
<td>7.4</td>
<td>Other Non-explosive Excavation Methods</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Controlled Foam Injection</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Gas Pressure Rock-Breaking Products</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Pulse Plasma Rock Splitting Technology (PPRST)</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
</tbody>
</table>

8 Bench Blasting

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Geometrical Parameters of Bench Blasting</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Blasthole Inclination, β</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Blasthole Diameter, D</td>
</tr>
</tbody>
</table>
8.1.3 Height of Bench, H ... 286
8.1.4 Burden, W ... 287
8.1.5 Spacing, S ... 291
8.1.6 Subdrilling, H ... 293
8.1.7 Stemming, L_2 ... 294
8.1.8 Blasthole Pattern ... 295

8.2 Specific Charge (Powder Factor) and Explosive Charging
Calculation ... 297
8.2.1 Specific Charge (Powder Factor) 297
8.2.2 Calculation of Explosive Charging 298

8.3 Charge Configuration ... 299
8.3.1 Continuous Charge ... 299
8.3.2 Continuous Decking Charges (Fig. 8.8b) 299
8.3.3 Isolated Deck Charges (Fig. 8.8c) 300

8.4 Firing Method and Firing Sequence 301
8.4.1 Electric Detonator Initiation System 301
8.4.2 Shock Tube Detonator Initiation System 306
8.4.3 Electronic Detonator Firing Sequence Design 308

8.5 Delay Timing ... 309

References .. 312

9 Trench Blasting .. 313
9.1 Blasthole Pattern and Firing Sequence 313
9.1.1 Blasthole Diameter .. 313
9.1.2 Drilling Pattern .. 313
9.1.3 Firing Sequence ... 315

9.2 Explosive Charging ... 315

9.3 Blasting Safety in Trench Excavation 322

References .. 323

10 Contour Blasting Technique for Surface Excavation 325
10.1 Types of Contour Blasting 325
10.2 Presplitting and Smooth Blasting 326
10.2.1 The Characters of Presplitting and Smooth
Blasting Holes ... 326
10.2.2 The Mechanism of Presplitting and Smooth
Blasting .. 326

10.3 Parameters of Presplitting and Smooth Blasting 329
10.3.1 Theoretical Approaches 329
10.3.2 Empirical Approaches 331

10.4 Blast Design, Charging, and Initiation for Presplitting
and Smooth Blasting ... 333
10.4.1 Blast Design of Presplitting and Smooth Blasting 333
10.4.2 Explosive Charging for Presplitting and Smooth
Blasting Holes .. 334
10.4.3 Stemming and Initiation of Contour Blasting Holes 335
10.5 Cushion Blasting and Line Drilling .. 338
10.5.1 Cushion Blasting .. 338
10.5.2 Line Drilling .. 340
References .. 341

11 Blasting Safety for Surface Blasting 343
11.1 General Roles of Blasting Operation 343
11.2 Flyrock and Its Control ... 344
11.2.1 Flyrock and Its Cause of Formation 344
11.2.2 Calculation of Flyrock Distance 346
11.2.3 Precaution and Protective Measured for Flyrock 350
11.3 Ground Vibration and Its Control 354
11.3.1 Ground Vibration Produced by Rock Blasting 354
11.3.2 Factors which Affect the Magnitude of Ground Vibration .. 358
11.3.3 Controlling Ground Vibration During Blasting 363
11.3.4 Prediction and Restriction Criteria of Ground Vibration by Rock Blasting 364
11.3.5 Instrumentation for Monitoring Blasting Vibration 369
11.4 Air Overpressure Produced by Surface Blasting and Its Control .. 370
11.4.1 Air Overpressure Produced by Surface Blasting 370
11.4.2 Factors which Affect the Air Overpressure 371
11.4.3 Estimation of Air Overpressure 374
11.4.4 Criteria for Limiting Air Overpressure in Surface Blasting .. 375
11.4.5 Measures for Reducing Air Overpressure Produced by Surface Blasting 375
References .. 377

12 Blasting Models and Computer-Aided Design for Bench Blasting 379
12.1 Introduction ... 379
12.1.1 Blasting Models .. 379
12.1.2 Computer-Aided Blasting Design 380
12.1.3 Size Distribution of Rock Fragments in Blasting 380
12.2 Some Typical Blasting Models 383
12.2.1 Harries’ Mathematical Model 383
12.2.2 Favreau’s Model and BLASPA Simulation Program 386
12.2.3 Kuz–Ram Model .. 388
12.2.4 BMMC Mathematical Model 392
12.2.5 Blasting Models for Jointed Rock Mass 401
12.2.6 SABREX Model ... 405

12.3 Some Typical Program of Computer-Aided Design 407
12.3.1 Blast Maker ... 407
12.3.2 EXPERTIR .. 410
12.3.3 Blast-Code .. 411
12.3.4 IESBBD .. 417

References .. 423

Part III Underground Excavation

13 Introduction .. 427
13.1 Type and Features of Underground Excavation 427
13.2 Relationship Between Underground Excavation and Environment ... 429

13.2.1 Effects of Underground Excavation to the Environment ... 429
13.2.2 Environment Restrictions to the Underground Excavation ... 430

13.3 Methods of Underground Excavation in Rock 431

References .. 433

14 Mechanical Underground Excavation in Rock..................... 435
14.1 Drilling and Breaking Method 435
14.2 Roadheader Excavation ... 437
14.3 Raise Boring .. 441

14.3.1 Methods of Raise Boring 441
14.3.2 Main Uses of Raise Boring in Civil Construction 445
14.3.3 Main Benefits of Raise Boring 446

14.4 Tunnel Boring Machine (TBM) 447
14.4.1 Introduction ... 447
14.4.2 Classification of TBM ... 449
14.4.3 Mechanism of Rock Breakage by Cutting Tools 453
14.4.4 Operation Systems of TBM 456
14.4.5 TBM Type Selection .. 462

14.5 Mechanical Excavation for Shaft Sinking 462
14.5.1 Roadheader Excavation: Vertical Shaft Machine (VSM) ... 464
14.5.2 Shaft Boring Machine (SBM) 465

14.6 Bored Piles in Rock .. 467
14.6.1 Small- to Medium-Sized Bored Pile 469
14.6.2 Large-Diameter Concrete Bored Pile 469

References .. 471
15 Other Underground Excavation Methods ... 473
 15.1 Cut-and-Cover Method ... 473
 15.1.1 Construction Methods of Cut-and-Cover 473
 15.1.2 Support Methods for the Sidewalls of the Excavation 476
 15.2 Jacked Box Tunneling and Pipe Jacking 478
 15.2.1 Jacked Box Tunneling .. 478
 15.2.2 Pipe Jacking ... 480
References .. 482

16 Introduction to Underground Excavation by Drilling and Blasting 483
 16.1 Introduction ... 483
 16.1.1 Working Cycle of Excavation by D & B 483
 16.1.2 Working Condition ... 483
 16.1.3 Drilling Equipment, Explosives, and Blasting Design 484
 16.2 Excavation Methods for Tunnels and Caverns 485
 16.2.1 Full-Face Excavation .. 485
 16.2.2 Partial Face Excavation .. 486
 16.3 Excavation Methods for Shaft ... 488
 16.3.1 Shaft Sinking ... 488
 16.3.2 Raise Driving .. 491
 16.4 Explosive Charging .. 496
 16.4.1 Manual Charging .. 496
 16.4.2 Pneumatic Charging .. 498
References .. 502

17 Contour Blasting for Underground Excavation .. 503
 17.1 The Characters of Contour Blasting for Underground Excavation 503
 17.2 Charge Calculation for Smooth Blasting 504
 17.3 Blasthole Charging for Smooth Blasting 505
References .. 508

18 Blasting Design for Underground Excavation .. 509
 18.1 Blasting Design for Tunnel (Cavern) .. 509
 18.1.1 Hole Layout and Firing Sequence 509
 18.1.2 Types of Cut-Hole Pattern ... 509
 18.1.3 Some Important Issues on Cut Holes and Tunnel Blasting 515
 18.1.4 Parallel-Hole Cut Design: Cylinder Cuts 518
 18.1.5 Blasthole Pattern for Stoping 521
 18.1.6 Lifter Holes .. 523
 18.1.7 Contour Holes ... 525
18.1.8 Lineal Charge Concentration of Blasthole 525
18.1.9 General Information for Tunnel Blasting Design 526
18.2 Blasting Design for Shaft: Full Face Sinking 529
 18.2.1 Types of Cut-Hole Pattern 529
 18.2.2 Blasting Parameters for Shaft Blasting 531
18.3 Firing Sequence Design for Underground Blasting ... 532
 18.3.1 Principle of Firing Sequence Design 532
 18.3.2 Small Tunnel 534
 18.3.3 Large Tunnel 535
 18.3.4 Tunnel Blasting with Electronic Detonators 537
18.4 Computer-Aided Tunnel Design and Management 539
 18.4.1 Sandvik ISURE® Software: Tunnel Management Software 540
 18.4.2 Atlas Copco: Underground Manager MWD 545
References .. 551

19 Loading and Transportation for Underground Excavation 553
19.1 Loading and Haulage in Tunnel 553
 19.1.1 Wheel Loader and Dump Truck 555
 19.1.2 Continuous Mucking Machine and Shuttle Car/Belt Conveyor 556
 19.1.3 Railway Transportation 558
19.2 Loading and Hoisting in Shaft Excavation 562
 19.2.1 Manual Shaft Sinking 562
 19.2.2 Mechanizing Shaft Sinking 562
References .. 566

20 Ventilation for Underground Excavation 567
20.1 Requirement of Ventilation for Underground Excavation .. 567
 20.1.1 Requirement of Air Quality 567
 20.1.2 Fresh Air Supply Quantities 568
20.2 Ventilation Equipment 568
 20.2.1 Ventilation Machine: Fans 568
 20.2.2 Requirements to Ventilation Equipment 568
 20.2.3 Type of Fans for Underground Ventilation System .. 569
20.3 Design of Ventilation System 569
 20.3.1 Calculation of Discharge Volume of Ventilation . 569
 20.3.2 Calculation of Ventilation Pressure 571
 20.3.3 Design of Fan and Ventilation Duct 572
 20.3.4 Choose of Van 573
 20.3.5 Ventilation Duct 573
20.4 Ventilation Types for Underground Excavation 575
 20.4.1 Supply Ventilation (Press or Forcing Ventilation) .. 575
 20.4.2 Extraction (Exhaust)-Only Ventilation 576
20.4.3 Compound Type of Ventilation (Overlap System) 577
20.5 Ventilation Optimization .. 577
References .. 578

21 Ground Reinforcement and Support .. 579
21.1 Effects of the Stability of Rock Mass to Underground Excavation .. 579
21.1.1 Concept of Ground Pressure and Stress Pattern Around Underground Excavation 579
21.1.2 Effects of Ground Conditions on Underground Excavation .. 584
21.1.3 Classification of Stability of Rock Mass for Excavation .. 584
21.2 Ground Prereinforcement for Excavation 594
21.2.1 Ground Freezing .. 594
21.2.2 Grouting .. 600
21.3 Initial Support of Newly Excavated Space 607
21.3.1 Rock Dowels, Rock Bolts, and Rock Anchors 609
21.3.2 Types of Rock Bolts .. 609
21.3.3 Application Guideline and Equipment for Bolt Installation .. 613
21.3.4 Installation of Wire Mesh on Rock Face 621
21.3.5 Shotcrete ... 621
21.3.6 Steel Arch Ribs and Steel Lattice Arch Girders 623
21.3.7 Spiling (Forepoling) and Pipe Roofing 625
21.3.8 Portal Excavation and Temporary Support 628
21.4 Permanent Support for Underground Excavation 628
21.4.1 Selection of Permanent Support ... 628
21.4.2 Types of Permanent Support ... 629
21.5 New Austrian Tunneling Method (NATM) 635
References .. 637

22 Monitoring and Instrumentation for Underground Excavation 639
22.1 Introduction .. 639
22.2 Settlement Monitoring .. 640
22.2.1 Ground Settlement Monitoring ... 640
22.2.2 Utility Settlement and Building Settlement Monitoring ... 641
22.3 Displacement and Deformation Monitoring 645
22.3.1 Inclinometer Monitoring ... 645
22.3.2 Magnetic Extensometer and Monitoring 647
22.3.3 Tiltmeter ... 647
22.3.4 Crack Monitoring: Telltales .. 649
22.3.5 Convergence Array Monitoring ... 650
22.3.6 Time-Domain Reflectometer Probe: Slope Movement Detector 654

22.4 Groundwater Monitoring ... 655
22.4.1 Standpipe and Piezometer .. 655
22.4.2 Vibrating Wire Piezometer ... 655
22.4.3 Pore Water Pressure Gauge .. 658

22.5 Ground Vibration and AOP Monitoring .. 658

22.6 Instrumentation Management .. 659
22.6.1 Instrumentation Selection ... 659
22.6.2 Frequency of Monitoring Readings 660
22.6.3 Warning Mechanism: 3A Levels .. 667

References .. 667

23 Health and Safety, and Risk Management in Underground Excavation .. 669

23.1 Introduction .. 669

23.2 General Requirements for Underground Excavation .. 673
23.2.1 Employee Identification System ... 673
23.2.2 Illumination .. 673
23.2.3 Communication ... 674
23.2.4 Signals ... 675

23.3 Major Hazards and Risks and the Elimination Measures .. 675
23.3.1 Ground Risk .. 675
23.3.2 Ground Vibration Produced by Blasting 676
23.3.3 Tunnel Boring Machine (TBM) ... 678
23.3.4 Tunnel Transport ... 680
23.3.5 Shaft Under Construction ... 681
23.3.6 Tunnel Atmosphere and Air Quality Control 684
23.3.7 Fire and Rescue System ... 685
23.3.8 Explosives and Blasting Works .. 687

23.4 Explosives Stored in Site Magazine and Site Transportation .. 690
23.4.1 Site Explosives Magazine .. 690
23.4.2 Explosives Transport ... 695
23.4.3 Fire Extinguisher for Site Magazine and Explosives Trucks and Its Use 696
23.4.4 Emergency Plan .. 697

References .. 698
Theory and Technology of Rock Excavation for Civil Engineering
Zou, D.
2017, XXVIII, 699 p. 566 illus., 324 illus. in color., Hardcover