Preface

The first edition of this book was published by Science Press, Beijing/Springer-Verlag, Heidelberg, in 2010 mainly concerning a mathematical theory of elasticity of solid quasicrystals, in which the Landau symmetry breaking and elementary excitation principle plays a central role. Bak, Lubensky and other pioneering researchers introduced a new elementary excitation—phason drawn from theory of incommensurate phase apart from the phonon elementary excitation well-known in condensed matter physics.

Since 2004, the soft-matter quasicrystals with 12-fold symmetry have been observed in liquid crystals, colloids and polymers; in particular, 18-fold symmetry quasicrystals were observed in 2011 in colloids; this symmetry in quasicrystals is discovered for the first time. These observations belong to an important event of chemistry in twenty-first century and have attracted a great deal of attention of researchers. Readers are interested in many topics of the new area of study. However, accumulated experimental data related with mechanical behaviour of the new phase are very limited, there is the lack of fundamental data, the mechanism of deformation and motion of the matter has not sufficiently been explored after the discovery over one decade, and it leads to fundamental difficulties to the study. Due to these difficulties, an introduction to soft-matter quasicrystals is given in very brief in Major Appendix of this book.

Though the new edition increases some new contents, the title of the book has not been changed, because the main part of which is still concerned with elasticity of solid quasicrystals, and only new chapter—Chap. 16—on hydrodynamics of quasicrystals is added; the introduction on soft-matter quasicrystals is very limited and listed in the Major Appendix. The changes of the contents of the first 15 chapters are not too great; we add some examples with application significance and exclude ones of less practical meaning; a part of contents of Appendix A is moved into the Appendix of Chap. 11, and add a new appendix, i.e. Appendix C in the Major Appendix, in which some additional derivations of hydrodynamic equations of solid quasicrystals based on the Poisson bracket method are included, which may be referred by readers. Some type and typesetting errors and mistakes contained in
the first edition are removed, but some new errors and mistakes might appear in the new edition; any criticisms from readers are warmly welcome!

The author sincerely thanks the National Natural Science Foundation of China and the Alexander von Humbold Foundation of Germany for their support over the years. Due to the support of AvH Foundation, the author could visit the Max-Planck Institute for Microstructure Physics in Halle and the Institute for Theoretical Physics in University of Stuttgart in Germany; the cooperative work and discussions with Profs. U. Messerschmidt, H.-R. Trebin and Dr. C. Walz were helpful, especially cordial thanks due to Prof. U. Messerschmidt for his outstanding monograph “Dislocation Dynamics During Plastic Deformation” which helped the work of the present edition of the book. Thanks also to Profs T.C. Lubensky in University of Pennsylvania, Z.D. Stepensheng in University of Akron in USA and Xian-Fang Li of Central South University in China for beneficial discussions and kind helps. At last, the author thanks the readers, their downloading, view, review and citation are very active, and this encourages me to improve the work.

Beijing, China

Tian-You Fan
Mathematical Theory of Elasticity of Quasicrystals and Its Applications
Fan, T.-Y.
2016, XVI, 452 p. 103 illus., 40 illus. in color., Hardcover