Contents

1 Applying Förster-Type Nonradiative Energy Transfer Formalism to Nanostructures with Various Directionalities: Dipole Electric Potential of Exciton and Dielectric Environment 1
 1.1 Spherical Geometry: Nanoparticle Case 1
 1.2 Cylindrical Geometry: Nanowire Case 2
 1.3 Planar Geometry: Quantum Well Case 5
 Reference .. 8

2 Förster-Type Nonradiative Energy Transfer Rates for Nanostructures with Various Dimensionalities 9
 2.1 Cases of Förster-Type Energy Transfer to an Nanoparticle:
 NP → NP, NW → NP, and QW → NP 10
 2.2 Cases of Förster-Type Energy Transfer to an Nanowire:
 NP → NW, NW → NW, and QW → NW 14
 2.3 Cases of Förster-Type Energy Transfer to a Quantum Well:
 NP → QW, NW → QW, and QW → QW 18
 2.4 Example: Energy Transfer Between Nanoparticles
 and Nanowires .. 21
 2.5 Summary .. 23
 References.. 25

3 Nonradiative Energy Transfer in Assembly of Nanostructures 27
 3.1 Energy Transfer Rates for Nanoparticle, Nanowire,
 or Quantum Well to 1D Nanoparticle Assembly 29
 3.2 Energy Transfer Rates for Nanoparticle, Nanowire,
 or Quantum Well to 2D Nanoparticle Assembly 30
 3.3 Energy Transfer Rates for Nanoparticle, Nanowire,
 or Quantum Well to 3D Nanoparticle Assembly 32
 3.4 Energy Transfer Rates for Nanoparticle, Nanowire,
 or Quantum Well to 1D Nanowire Assembly 33
Understanding and Modeling Förster-type Resonance Energy Transfer (FRET)
FRET from Single Donor to Single Acceptor and Assemblies of Acceptors, Vol. 2
Hernández Martínez, P.L.; Govorov, A.; Demir, H.V.
2017, VI, 42 p. 15 illus. in color., Softcover
ISBN: 978-981-10-1871-8