1 Introduction .. 1
 1.1 Background ... 1
 1.2 Major Challenges of the Research 3
 1.3 Monograph Organization 5
 References .. 7

2 Overview on Performance-Based Engineering Under Multihazard Environments 9
 2.1 Performance-Based Engineering and Design 9
 2.1.1 Performance-Based Seismic Design (PBSD) 9
 2.1.2 Performance-Based Wind-Resistant Design (PBWD) 10
 2.1.3 Prediction of Typhoon and Its Risk by Simulation 13
 2.1.4 Uncertainty Modeling in Wind Engineering 15
 2.2 Dynamic Response Analysis of High-Rise Buildings 17
 2.2.1 Analysis Method in Time Domain 17
 2.2.2 Analysis Method in Frequency Domain 22
 2.3 Structural Design Optimization 27
 2.3.1 Classical Optimization Method 27
 2.3.2 Formulations for Structural Optimization 29
 2.3.3 Dynamic Response Optimization 32
 2.4 Reliability-Based Design Optimization 35
 2.4.1 Reliability Analysis Method 35
 2.4.2 Reliability Index Optimization Approach 40
 2.4.3 Performance Measure Optimization Approach 41
 2.5 Summary .. 42
 References .. 43

3 A Hybrid RANS and Kinematic Simulation of Wind Load Effects on Full-Scale Tall Buildings. 55
 3.1 Introduction .. 55
 3.2 RANS Simulation of Mean Flow Field 58
3.3 Kinematic Simulation of Fluctuating Velocity Field
and Poisson Equation ... 60
3.3.1 Energy Density of Anisotropic Turbulence
Near the Ground ... 60
3.3.2 Energy Density of Anisotropic Turbulence
Near the Ground ... 63
3.3.3 Pressure Fluctuations Associated with Simulated
Velocity Fields .. 65
3.4 Case Study .. 66
3.4.1 Wind Tunnel-Based Pressure Measurements 66
3.4.2 Numerical Simulation 67
3.5 Results and Discussion 71
3.5.1 RANS Simulation ... 72
3.5.2 Kinematic Simulation 72
3.5.3 Results of Pressure Fluctuations 74
3.6 Conclusions ... 79
References ... 79

4 Peak Distributions and Peak Factors of Wind-Induced Pressure
Processes on Tall Buildings 83
4.1 Introduction .. 83
4.2 Peak Factors for Non-Gaussian Processes 85
4.2.1 Hermite Moment-Based Method 85
4.2.2 Revised Hermite Model (RHM) 86
4.2.3 Generalized Peak Factor Considering Bandwidth
Parameter .. 87
4.2.4 Skewness-Dependent Peak Factor 87
4.3 Peak Distribution Models 88
4.4 Asymptotic Extreme Value Distribution and Fractile Levels 89
4.5 Translated-Peak-Process Method 91
4.5.1 Determination of Statistical Parameters of Weibull
Distribution .. 91
4.5.2 Procedure of Translated-Peak-Process (TPP) Method 92
4.6 Comparison of Different Approaches Using the CAARC
Building .. 92
4.6.1 Wind Tunnel-Based Pressure Measurements 92
4.6.2 Non-Gaussian Properties of Wind Pressure 93
4.6.3 Peak Factor Results and Discussions 94
4.7 Summary ... 102
References ... 102
5 Time-Domain Dynamic Drift Optimization of Tall Buildings

Subject to Stochastic Excitation .. 105

5.1 Introduction .. 105

5.2 Dynamic Response Analysis of Tall Buildings 106
5.2.1 Equations of Motion ... 106
5.2.2 Vibration Analysis in Time Domain 108
5.2.3 Drift Performance of a Tall Building Under Wind and Earthquake .. 109

5.3 Time-Variant Reliability and Probabilistic Constraints 111
5.3.1 The Reliability of Top Deflection Performance 111
5.3.2 Bound Estimation of System Reliability for Interstory Drift Ratio .. 112

5.4 Dynamic Response Optimization 113
5.4.1 Formulation of Dynamic Response Optimization 113
5.4.2 Treatment and Explicit Formulation of Time-Dependent Drift Constraints 114
5.4.3 Explicit Formulation of Probabilistic Drift Constraints . 116
5.4.4 Optimality Criteria Method and Design Procedure 118

5.5 Case Study .. 120
5.5.1 Performance of the CAARC Building Under Earthquake ... 120
5.5.2 Dynamic Response Optimization for Wind Hazards . . 121

5.6 Summary ... 130

References ... 130

6 Integrated Structural Optimization and Vibration Control for Improving Dynamic Performance of Tall Buildings 133

6.1 Introduction .. 133

6.2 A Benchmark Tall Building Under Wind Hazard 134

6.3 Optimal Performance-Based Design Problem 137
6.3.1 Optimal Design Problem Formulation 137
6.3.2 Explicit Formulation of Elastic Drift and Acceleration Constraints ... 139
6.3.3 Optimality Criteria Method 141
6.3.4 Design Optimization Results for the Uncontrolled Building .. 141

6.4 Vibration Control Using Smart Tuned Mass Damper (STMD) . 142
6.4.1 Smart Tuned Mass Damper (STMD) 143
6.4.2 Control Algorithm and Controlled Building Responses . 143
6.4.3 An Evaluation on the Capital Cost of the STMD 146
6.4.4 An Empirical Cost Model of the STMD 149

6.5 Optimal Performance-Based Design Integrating Vibration Control .. 150
6.5.1 Optimal Design Problem for a Controlled Building ... 150
6.5.2 Necessary Optimality Conditions 151
6.5.3 Design Optimization Results for the Controlled Building. 152

6.5.4 Cost Comparison Among Vibration Control and Design Optimization Results. 154

6.6 Summary 154

References 155

7 Performance-Based Design Optimization of Wind-Excited Tall Buildings 157

7.1 Introduction 157

7.2 Performance-Based Wind Engineering Design Framework 160

7.2.1 Acceleration-Related, Two-Level Serviceability Performance Criteria During Frequent or Occasional Wind 161

7.2.2 Elastic Performance Level for Rare Wind Hazards 162

7.2.3 Life Safety Performance During Very Rare Wind Hazards 163

7.2.4 Statistical Analysis of the Performance-Based Design Wind Speed 163

7.3 Nonlinear Static Analysis of Tall Buildings Subject to Very Rare Wind Excitations 164

7.4 Optimal Wind Performance-Based Design Considering Inelastic Effects 166

7.4.1 Explicit Formulation of Plastic Drift Constraints 168

7.4.2 Explicit Formulation of the Elastic Drift and Acceleration Constraints 170

7.4.3 Augmented Optimality Criteria Method 170

7.4.4 Two-Phase Execution 172

7.5 Case Study: The Illustrative Building Example 172

7.5.1 The 40-Story Residential Building 172

7.5.2 Wind Tunnel Test 175

7.5.3 Wind-Induced Pushover Analysis 177

7.5.4 Results and Discussions 179

7.6 Summary 183

References 183

8 Dynamic Identification and Performance Assessment on a Full-Scale Tall Building 187

8.1 Introduction 187

8.2 Full-Scale Field Measurements 189

8.2.1 Measured Vibration Data 189

8.2.2 Identification Methods 190

8.2.3 Modal Frequency and Aerodynamic Damping Ratios 193
8.3 Wind Tunnel Investigation .. 197
8.3.1 Experiment Details .. 198
8.3.2 Aerodynamic Forces ... 200
8.3.3 Acceleration Response .. 203
8.4 Summary ... 204
References ... 204

9 Multihazard Performance Assessments of a High-Rise Building in Hong Kong ... 207
9.1 Introduction ... 207
9.2 Building Information and Comparison Cases....................... 208
9.3 Earthquake Responses of Buildings in Hong Kong 210
 9.3.1 Earthquake Load Input ... 210
 9.3.2 Earthquake Response Analysis 214
9.4 Wind Tunnel Investigation .. 214
 9.4.1 Experiment Details .. 214
 9.4.2 Wind-Induced Response Analysis 217
9.5 Comparison of Building Performances Under Wind and Earthquake Hazards .. 218
 9.5.1 Building Height .. 218
 9.5.2 Short- and Long-Distance Earthquakes 220
 9.5.3 Mean Recurrence Interval .. 224
 9.5.4 Damping Ratios .. 226
9.6 Summary ... 230
References ... 231
High-Rise Buildings under Multi-Hazard Environment Assessment and Design for Optimal Performance
Huang, M.
2017, XXVII, 232 p. 100 illus., 66 illus. in color., Hardcover
ISBN: 978-981-10-1743-8