Contents

1 Introduction to Power Quality, Standards and Parallel Power Quality Compensators 1
 1.1 Introduction ... 1
 1.2 Power Quality Issues .. 2
 1.3 Power Quality Standards ... 4
 1.4 Detailed Description of Current Quality Issues and Standards ... 6
 1.4.1 Harmonics .. 6
 1.4.2 Current Quality Standards 8
 1.5 Power Quality Measured Results in Macau 9
 1.5.1 Low Power Factor—Reactive Current Problem 11
 1.5.2 Current Harmonics ... 12
 1.5.3 Excessive Neutral and Unbalance Currents 12
 1.6 Shunt Power Quality Compensators 13
 1.7 Summary .. 15

References ... 16

2 Basic Principles for Parallel Power Electronic Filters 19
 2.1 Parallel Compensation for Reactive Power, Current Harmonics and Unbalance 19
 2.1.1 Influence of Reactive Power 20
 2.1.2 Influence of Harmonics .. 21
 2.1.3 Influence of Unbalance .. 23
 2.1.4 Basic Principle of Parallel Compensation 25
 2.2 Instantaneous Power Compensation 29
 2.2.1 Definitions in a-b-c Frame 30
 2.2.2 Definitions in α-β-0 Frame 31
 2.2.3 Mixed-Coordinate Instantaneous Compensation 33
2.3 Three-Phase Converters and Their Discussions ... 39
 2.3.1 Realization of 3 Dimensional Coordinates for Three-Phase Systems 40
 2.3.2 Basic Three-Phase Converters, 3D Coordinates and Their Comparisons 42
 2.3.3 DC Voltage Unbalance, Variation, Switching Functions and 3D Coordinates 52
2.4 Summary ... 56
References ... 56

3 Active Power Filters .. 59
 3.1 Development of Active Power Filters ... 59
 3.2 A Two-Level Four-Leg VSI as a Three-Phase Four-Wire Active Power Filter 64
 3.2.1 Modeling of Two-Level Four-Leg Active Power Filters .. 64
 3.2.2 Voltage Control Signals According to the Required Compensating Currents 66
 3.2.3 Space Vector Analysis of a Four-Leg VSI .. 67
 3.2.4 Hysteresis PWM ... 71
 3.2.5 Space Vector Modulation .. 74
 3.3 Two-Level and Three-Level Three-Leg Center-Split VSI as Three-Phase Four-Wire Active Power Filters ... 83
 3.3.1 Modeling of Three-Leg Center-Split Active Power Filters .. 84
 3.3.2 Space Vector Analysis of a Three-Leg Center-Split VSI .. 86
 3.3.3 Three-Dimensional Sign-Cubical Hysteresis PWM ... 92
 3.3.4 Three-Dimensional Cylindrical Coordinate PWM .. 97
 3.3.5 Three-Dimensional Space Vector Modulation ... 105
 3.3.6 DC Linked Voltage Variation Control .. 114
 3.4 Three-Phase Four-Wire Multi-Level VSIs ... 123
 3.5 Generalized PWM for Multi-Level Three-Leg Center-Split and Four-Leg VSIs 125
 3.5.1 Generalized 3D Direct PWM .. 125
 3.5.2 Generalized FPGA-Based 3D PW Modulator .. 129
 3.5.3 Experimental Verification of the 3D PW Modulator .. 136
 3.6 Design and Implementation of Active Power Filters ... 137
 3.6.1 Minimum DC-Link Voltage Study for APF Under Reactive Power and Current Harmonics Compensation .. 137
 3.6.2 Design of Coupling Inductor .. 146
3.6.3 Implementation of a Three-Phase Four-Wire APF Prototype .. 151
3.6.4 Experimental Results ... 158
3.7 Summary .. 163
References ... 164

4 Hybrid Active Power Filters ... 167
4.1 Development of Hybrid Active Power Filters (HAPFs) 167
 4.1.1 HAPF Topology 1—Series APF and Shunt PPF 168
 4.1.2 HAPF Topology 2—Shunt APF and Shunt PPF 169
 4.1.3 HAPF Topology 3—APF in Series with Shunt PPF 170
4.2 Comparison Among Three General HAPF Topologies 171
4.3 Existing Problems and Operation Principles of Conventional LC-HAPF ... 173
 4.3.1 Existing Problems of Conventional LC-HAPF 174
 4.3.2 LC-HAPF Reference Compensating Current Determination Based on Single-Phase Instantaneous P-Q Theory .. 175
 4.3.3 LC-HAPF Reactive and Harmonic Reference Compensating Current Determination and PWM Control Block Diagram 176
4.4 Analysis of Three-Phase Four-Wire LC-HAPF Compensating Performances .. 177
 4.4.1 LC-HAPF Single-Phase Harmonic Circuit Model 178
 4.4.2 Simulation Investigation of LC-HAPF Steady-State Compensating Performances .. 182
4.5 Dynamic Reactive Power Compensation and DC-Link Voltage Control Consideration for LC-HAPF 191
 4.5.1 Modeling of the DC-Link Voltage in a LC-HAPF Single-Phase Equivalent Circuit .. 192
 4.5.2 Influence on DC-Link Voltage During LC-HAPF Performs Reactive Power Compensation 194
 4.5.3 LC-HAPF Operation by Conventional DC-Link Voltage Control Methods .. 197
 4.5.4 Proposed DC-Link Voltage Control Method 200
 4.5.5 Simulation and Experimental Verifications 205
4.6 Adaptive DC-Link Voltage Control Strategy for LC-HAPF and APF in Reactive Power Compensation 214
 4.6.1 Single-Phase Fundamental Equivalent Circuit Model of LC-HAPF .. 214
 4.6.2 LC-HAPF Required Minimum DC-Link Voltage with Respect to Loading Reactive Power 217
 4.6.3 Adaptive DC-Link Voltage Controller for a Three-Phase Four-Wire LC-HAPF .. 220
4.6.4 Simulation and Experimental Verifications of the Adaptive DC-Link Voltage Controller for the Three-Phase Four-Wire LC-HAPF 224
4.6.5 Simulation and Experimental Verifications of the Adaptive DC-Link Voltage Controller for the Three-Phase Four-Wire APF 233

4.7 Minimum Inverter Capacity Design for Three-Phase Four-Wire LC-HAPF 242
4.7.1 Mathematical Modeling of a Three-Phase Four-Wire Center-Split LC-HAPF in A-B-C Coordinate 242
4.7.2 Minimum Inverter Capacity Analysis of a Three-Phase Four-Wire Center-Split LC-HAPF 243
4.7.3 Simulation and Experimental Verifications for Minimum Inverter Capacity Analysis of the Three-Phase Four-Wire LC-HAPF 246

4.8 Design and Performance of a 220 V/10 kVA Three-Phase Four-Wire LC-HAPF Experimental Prototype 251
4.8.1 System Configuration of Three-Phase Four-Wire LC-HAPF 251
4.8.2 Balanced and Unbalanced Testing Loads 252
4.8.3 Design of Coupling LC of LC-HAPF 253
4.8.4 Design of Active Inverter Part of LC-HAPF 254
4.8.5 Experimental Results for a 220 V/10 kVA Three-Phase Four-Wire LC-HAPF Experimental Prototype 260

4.9 Summary .. 272
References .. 273
Parallel Power Electronics Filters in Three-Phase Four-Wire Systems
Principle, Control and Design
Wong, M.-C.; Dai, N.-Y.; Lam, C.-S.
2016, XX, 275 p. 224 illus., 99 illus. in color., Hardcover
ISBN: 978-981-10-1529-8