1 Introduction to Superconductivity in Alkali-Doped Fullerides
 1.1 Superconductivity in Alkali-Doped Fullerides
 1.1.1 Historical Background
 1.1.2 Properties of Alkali-Doped Fullerides Revealed by Experiments
 1.1.3 Electronic Structure and Electronic Correlations
 1.1.4 Electron-Phonon Interactions and Phonon Frequencies
 1.1.5 On Applicability of Conventional Mechanism
 1.1.6 Unconventional Mechanisms
 1.2 Aim of the Thesis
 1.3 Outline of the Thesis
References

2 Methods: Ab Initio Downfolding and Model-Calculation Techniques
 2.1 Multi-energy-scale Ab Initio Scheme for Correlated Electrons (MACE)
 2.1.1 General Framework
 2.1.2 Low-Energy Effective Hamiltonian
 2.2 Ab Initio Downfolding for Electron-Phonon Coupled Systems
 2.2.1 Density Functional Theory
 2.2.2 Maximally Localized Wannier Function
 2.2.3 Constrained Random Phase Approximation
 2.2.4 Density-Functional Perturbation Theory
 2.2.5 Constrained Density-Functional Perturbation Theory
 2.3 Analysis of Low-Energy Hamiltonian
 2.3.1 Dynamical Mean-Field Theory
 2.3.2 Extended Dynamical Mean-Field Theory
 2.3.3 Impurity Solver: Continuous-Time Quantum Monte Carlo Method
2.3.4 Simulation of Superconducting State Within Extend
DMFT 85

2.4 Combining Model Derivation and Model Analysis 90
2.4.1 Interfaces 90
2.4.2 Overview of Whole Scheme 95

References ... 98

3 Application of cDFPT to Alkali-Doped Fullerides 101
3.1 Calculated Materials and Calculation Conditions 101
3.2 cDFPT Results 103
3.2.1 Partially Renormalized Phonon Frequencies 103
3.2.2 Effective Onsite Interactions Mediated by Phonons 104
3.2.3 Dynamical Structure of Onsite Interaction Including
Coulomb and Phonon Contributions Along Real
Frequency Axis ... 106
3.3 Comparison Between Partially Renormalized and Fully
Renormalized Quantities 107
3.3.1 Difference in Frequencies 108
3.3.2 Difference in Phonon-Mediated Interactions 109
3.4 Smallness of Electron-Phonon Vertex Correction
in Downfolding Procedure 113

References ... 116

4 Analysis of Low-Energy Hamiltonians with Extended DMFT 119
4.1 Input Parameters 119
4.2 Frequency Dependence of Effective Onsite Interaction 120
4.3 Phase Diagram 121
4.3.1 Comparison Between Theory and Experiment 121
4.3.2 Accuracy of Phase Boundaries 122
4.4 Metal-Insulator Transition 123
4.4.1 Physical Quantities at 40 K 123
4.4.2 Spectral Functions 126
4.5 Nature of Superconductivity 128
4.5.1 Gap Function 128
4.5.2 Pairing Mechanism 129
4.5.3 Possible Explanations on Origin of Dome-Shaped T_c 131

References ... 134

5 Concluding Remarks 137
5.1 Summary of the Thesis 137
5.2 Future Issues ... 138

References ... 140

Curriculum Vitae ... 141
Ab Initio Studies on Superconductivity in Alkali-Doped Fullerides
Nomura, Y.
2016, XX, 143 p. 27 illus., 18 illus. in color., Hardcover
ISBN: 978-981-10-1441-3