Chapter 2
Reactions at Saturated and Unsaturated Carbons

Abstract This chapter covers the geometrical requirements for reactions at saturated and unsaturated carbons in both acyclic and cyclic systems with related stereochemical features. The nucleophilic attacks in S_N2 and S_N2' processes, involving the necessary geometrical requirements, are discussed. The resonance-driven activation of cyclopropane is of much significance in synthetic chemistry. The mode of activation and its consequences on the product profile are amply reasoned. The S_N2-originated 1,2-migration within the geometrical constraints of the reactant and neighboring group participation under solvolysis conditions have been explained with emphasis on product distribution. The activation of oxiranes by Lewis acids, followed rearrangement with stereochemical effects, is elaborated. Given the suitable geometrical disposition of substituents and functional groups in a given molecule, many 1,2-migrations take place in tandem to generate fascinating skeletons. This chemistry has been described by the construction of several steroidal skeletons. Baldwin rules and the preferential 5-exo-trig over 5-endo-trig cyclization are demonstrated using kinetics and related product analysis with examples. The stereoelectronically controlled addition reactions have been highlighted.

Keywords S_N2 and S_N2' reactions · Baldwin rules · Oxirane opening · Activation of a cyclopropane · 1,2-rearrangement · Ring contraction · Ring expansion · Solvolysis · Neighboring group participation · Oxirane rearrangement · Classical and nonclassical carbocations · 5-exo-vis-à-vis 5-endo cyclization · Addition and elimination reactions

The concerted bond formation and bond cleavage in S_N2 reactions proceeds with full stereoelectronic control. In the transition structure 2 for the reaction, both the nucleophile and the leaving group are bonded to the central carbon atom, which has acquired sp2 character. One lobe of the p orbital on the carbon overlaps with the incoming nucleophile and the other lobe with the leaving group. Since the nucleophile approaches the carbon from the direction opposite to the leaving group, the result is Walden inversion or inversion of configuration. The reaction is, thus,
controlled by electronic effects that impose a definite geometrical restraint in the transition structure.

The evidence as to the fact that the nucleophile is indeed aligned in a collinear arrangement to the leaving group is provided from the transformation $4 \rightarrow 5$, which was discovered to take place via an intermolecular process rather than the formally appealing intramolecular version shown in 6. The intramolecular version does not allow the said collinear arrangement [1]. The reaction was found indeed to be bimolecular.

In accordance with the collinear requirement, epoxides react with nucleophiles and open up to give products of well-defined stereochemistry. We shall investigate this by considering the conformationally rigid unsymmetrical epoxide 7, which may form two different products 9 and 11 by following different pathways. While the diaxial product 9 results from axial attack at C3 and proceeds through the chair-like intermediate 8, the diequatorial product 11 results from equatorial attack at C2 and proceeds through the twist boat-like intermediate 10. Since the equatorial attack at C2 proceeds through a higher energy twist-boat transition structure than the chair transition structure arising from axial attack at C3, the product 9 must form in preference to 11 under kinetically controlled conditions. It should be noted that the 1,2-diequatorial product is thermodynamically more stable than 1,2-diaxial product on account of the possible 1,3-diaxial interactions in the latter. Indeed, epoxide opening to give the diaxial product is very well known.
The intramolecular S_N2 opening of epoxides must also follow the above stereoelectronic requirement within the geometrical constraints of the system. It is solely based on the collinear requirement of the S_N2 reaction that Stork favored intramolecular opening leading to a six-membered ring more than that leading to a five-membered ring. While the nucleophile is perfectly aligned for a rear collinear attack in the formation of the six-membered in 12, it is poorly aligned in the formation of the five-membered ring in 13. The trajectory requires the nucleophile to be on the dotted line which, in turn, requires considerable bond distortion. From the reactions of the epoxynitriles 14 and 16 under basic conditions, it was indeed discovered that the transformation 14 → 15 leading to a six-membered ring is significantly easier than the transformation 16 → 17 leading to a five-membered ring [2].

A similar analysis of the transition state requirement allowed Stork to realize that it was easier to achieve collinearity in the formation of a four-membered ring than in the formation of a five-membered ring. Thus, for a given situation where both the four- and five-membered rings could form, the former was considered to prevail. Indeed, the reaction of the epoxynitrile 18 with a base (required for deprotonation to generate the requisite carbanion) in benzene furnished a 95:5 mixture of the isomeric cyclobutanes 19 and 20 only [3]. No five-membered ring product was formed. One may note that the major isomer 19 is less stable due to two large substituents being cis to each other than in the minor isomer 20. This result indicates that the transition state structure 21, leading to 19, is of lower energy than the transition state structure 22 that leads to 20. In the transition state structure 22, the nitrogen atom along with the large solvated metal ion comes close to the far end of the epoxide carbon to cause significant van der Waals interactions. In yet another interesting example, iodolactonization of the \(\beta,\gamma \)-unsaturated carboxylic acid salts 23 were found to yield the butyrolactones 24 in preference to the otherwise more stable \(\gamma \)-lactones 25. The internal opening of the three-membered ring iodonium ion (equivalent to an epoxide) by the carboxylate ion leading to a four-membered ring product, 23 → 24, is preferred over the opening leading to a five-membered ring product, 23 → 25.
Finally, in regard to the internal opening of an epoxide ring, cyclopropane formation is preferred over cyclobutane formation, regardless of the relative degree of substitution of the ring. For instance, the reaction of 26 with a suitable base generated the cyclopropane 27 exclusively [3]. The transition state structure for this transformation resembles the transition state structure 21 above, but with one carbon less in the chain linking the nitrile group and the ring.

In summary, in internal epoxide ring opening, six-membered ring formation does not require bending of any of the σ bonds of the chain, while the formation of five-, four-, and three-membered rings requires the simultaneous bending of four, three, and two such σ bonds, respectively, in addition to the electron pair orbital of the carbanion. Though the degree of bending is more pronounced in the formation of the three-membered ring than in others, the number of bonds that must bend simultaneously is more important than the degree of bond bending. Thus, the simultaneous bending of three σ bonds leading to cyclobutane formation is less difficult than the simultaneous bending of four σ bonds leading to cyclopentane formation, but more difficult than the bending of two σ bonds leading to cyclopropane formation. In other words, the facility of ring formation in the internal opening of epoxides decreases in the order: six-membered ring > three-membered ring > four-membered ring > five-membered ring.

We shall now turn to the internal Sₘ₂ reaction on a sp³ carbon. Purely on account of geometrical constraints imposed in achieving the collinear alignment,
Baldwin proposed a set of rules for such ring closure reactions [4]. The reactions were designated by a numerical prefix which denotes the size of the ring to be formed, followed by the term *exo* or *endo* depending upon whether the bond breaking is exocyclic or endocyclic to the ring thus formed. Now, a suffix such as *tet* (for a tetrahedral or sp3 carbon), *trig* (for a trigonal or sp2 carbon), or *dig* (for a diagonal or sp carbon) describes the state of hybridization of the electrophilic carbon. A collection of many such reactions are given below.

While all the reactions from 3-*exo-tet* to 7-*exo-tet* are favored, the 5-*endo-tet* and 6-*endo-tet* reactions are disfavored on stereoelectronic grounds, i.e., on account of the collinear requirement of S_N2 reactions. The relative ease of these processes is 3-*exo-tet* > 4-*exo-tet* < 5-*exo-tet* > 6-*exo-tet* > 7-*exo-tet*. It is important to recognize that the intramolecular S_N2 process proceeding through the transition structure resembling 6 constitutes a 6-*endo-tet* process and, hence, unfavorable.

The S_N2$^\prime$ reaction involves nucleophilic attack on the terminal sp2 carbon with a shift in the position of the double bond. The nucleophile may attack either *anti* or *syn* to the leaving group as shown in the transformations 28 \rightarrow 29 and 28 \rightarrow 30, respectively. The *syn* attack is preferred over the *anti* attack because the *syn* attack displaces the π electrons in the direction that is *anti* to the σ_{C-Y} bond and, thus, suitable for the next rear side attack.

In confirmation of the above preferred *syn* attack, reactions of the cyclohexenyl dichlorobenzoates 31 ($R = \text{Me, } i-\text{Pr, } t-\text{Bu}; R' = \text{Cl}_2\text{C}_6\text{H}_3$) with piperidine afforded 32. Likewise, the *trans* and *cis* mesitoates 31 and 33 ($R = i-\text{Pr}, R' = \text{C}_6\text{H}_2\text{Me}_3$)
reacted with piperidine to form 32 and 34, respectively [5, 6]. The difference in the relative dispositions of the two substituents on the cyclohexene core should be noted.

The story of the cyclohexenyl system is a little more complicated than from the above two reactions, because the cyclohexenyl system can exist in two conformations such as $35a$ and $35b$. A syn attack on $35a$ will proceed through the chair-like transition state resembling 36 and generate 37. In the transition state structure 36, the electron pair orbital is disposed anti to the leaving group Y and, thus, the subsequent elimination (or intramolecular S_N2 reaction) is facile. In the alternate anti attack, the transition state structure resembles the twist-boat structure 38, wherein the electron pair orbital is syn to the leaving group and, thus, not facile. Thus, the difficulties in the transformation $35a \rightarrow 39b$ are: (a) energy-requiring twist-boat transition structure 38, (b) stereoelectronically unsupported syn elimination leading to the transformation $38 \rightarrow 39a$, and (c) the energy requiring flip of the twist-boat olefin $39a$ to the half chair product $39b$. Out of these two processes, the process $35a \rightarrow 36 \rightarrow 37$ appears to be the better choice.
In the alternate conformer 35b, the syn attack will proceed through the twist-boat conformer resembling 40, wherein the axes of the electron pair orbital and $\sigma_{C\cdots Y}$ are anti but not antiperiplanar to allow a smooth elimination to 41a, going over to 41b through ring flip. However, in comparison, this transformation must be more facile than the transformation 35a \rightarrow 39b. Though the anti attack to 35b does proceed through a chair-like transition structure resembling 42, the final elimination reaction leading to 43 is not supported stereoelectronically for the syn dispositions of the electron pair orbital and the leaving group Y. Overall, the syn process 35a \rightarrow 36 is the most energy conserving process and it will be expected to prevail.

It is also conceivable that the twist-boat transition state structures 38 and 40 may undergo ring flip to 38a and 40a before collapsing through the elimination pathways to form 39b and 41b as shown in Eqs. 1 and 2, respectively.

A fascinating example of two consecutive syn additions is expressed from the overall transformation 42 \rightarrow 44 via 43, the product of the first syn addition, on reaction of 42 with sodium methoxide [7]. Note that the methoxy substituents in the product are syn, which could be easily established by nOe measurements.

It is conceivable that cyclopropane 1,1-dicarboxylate can adopt either of the three conformations exo,exo-45, endo,exo-45, and endo,endo-45. When the carbonyl group and the cyclopropane ring are anti across the intervening $\sigma_{C\cdots C}$ bond, we will consider the orientation to be exo. Likewise, when the carbonyl group and the cyclopropane ring are syn across the intervening $\sigma_{C\cdots C}$ bond, we will consider the orientation to be endo. However, all the above conformations are disfavored on dipolar and/or steric grounds. It is therefore assumed that 45 adopts preferably the conformer 45a or 45b to avoid the said interactions, on one hand, and still have the p orbital of the in-plane carbonyl function parallel to the adjacent $\sigma_{C\cdots C}$ bond. This arrangement activates the $\sigma_{C\cdots C}$ bond and allows a nucleophilic attack on the remote carbon. The resultant carbanion delocalizes into the carbonyl group as shown in the
transformation $45b \rightarrow 46$. The conformer $45b$ is preferred over $45a$ if one is to rely upon the anti-transition state structure theory. It is also evident that if the compound is locked in either of the conformations exo,exo-45, endo,exo-45, and endo,endo-45 for geometrical reasons, it will display heightened reactivity toward nucleophiles.

Indeed, when 47 is mixed with piperidine in benzene at room temperature, an exothermic reaction takes place to form the adduct 48 [8]. For substrates enjoying activation by a single carbonyl function, please see the transformations $49 \rightarrow 50$ [9] and $51 \rightarrow 52$ [10].
It is the consequence of the above activation mechanism that 53 equilibrates with 56 via 54 and 55, and likewise, 57 equilibrates with 60 upon addition of a catalytic amount of CH$_3$S(O)CH$_2$Na in DMSO as the solvent [11, 12].

Now, we shall consider rearrangement reactions that involve two or more intramolecular S_{N2} processes before reaching the product. Let us begin with the reaction of tertiary alcohols bearing a leaving group at the β carbon. Note that in the general transformation 61a \rightarrow 62, the group R_1 that migrates from the oxygen-bearing carbon to the carbon bearing the leaving group Y is disposed in an anti relationship with both σ_{C-X} and electron pair orbital on the oxygen atom. If for some reason, steric or otherwise, the molecule adopts the conformation as in 61b, it is R_2 that will migrate and yield the isomeric compound 63. Finally, the conformer 61c, wherein σ_{C-O} is anti to the leaving group Y, will lead to the epoxide 64.
We can now apply the above general concepts to a system wherein both the hydroxyl group and the leaving group Y are located at positions 1 and 2 on a ring system, such as in 65, and to a system wherein the hydroxyl function is located on a ring carbon and the leaving group Y on a carbon outside the ring, such as in 67. We shall notice ring contraction in the transformation 65 → 66 and ring expansion in the transformation 67 → 68. The carbon bearing the hydroxyl group in 65 comes out of the ring in the product 66 and, thus, the number of atoms in the ring gets reduced by one. In contrast, the carbon outside the ring in 67 becomes part of the ring in the product 68 and, thus, the ring gets enlarged by one.

Let us now apply the above concepts to the deamination of vicinal aminoalcohols on a cyclohexane backbone. Four different situations arise from the structures of 69, 72, 74, and 77. The amino group is transformed into a diazonium species to act as a leaving group as in structures 70, 73, 75 and 78, respectively. It is easy to note the antiperiplanar relationship of the ring bond in green color with an electron pair orbital on the oxygen in green color and the σC–N bond, also in green color, in structures 70 and 73. The rearrangement, as shown, occurs to furnish the ring-contracted aldehyde 71 in each instance. In the diazonium species 75, it is the axial hydrogen on the carbinol carbon that is antiperiplanar to the σC–N bond and, thus, the hydrogen migrates and the cyclohexanone 76 is formed. In the species 78, the carbinol oxygen itself is antiperiplanar to the σC–N bond, which allows an intramolecular nucleophilic displacement of the diazonium group and the epoxide 79 is formed. It is important to recall that the transformations 70/73 → 71 and 75 → 76 are typical of the transformations 61a/b → 62/63 and, likewise, the transformation 78 → 79 is typical of the transformation 61c → 64.
We will now consider some more such examples. Attempted reduction of 80 with LiAlH$_4$ furnished the ring-contracted product 83 [13]. The basic character of LiAlH$_4$ was responsible for deprotonation of the carbinol to generate the corresponding oxy anion 81, which triggers the rearrangement to 82. The carbonyl product 82 is reduced further by the hydride to yield the observed alcohol 83.

The transformations 84 \rightarrow 86, 87 \rightarrow 89 and 90 \rightarrow 92 are some of the other steroid-based examples wherein one ring is contracted and the other is enlarged by virtue of the structural design of the substrates [14].
A consequence of the relative orientational differences could also be seen from the changes $93 \rightarrow 94$ and $95 \rightarrow 96$ [15]. These changes are brought about upon treatment with a silver salt, AgBF$_4$, which weakens the σ_{C-Cl} bond to allow the σ_{C-C} bond antiperiplanar to it (green color bonds in the bicyclic system) to migrate. Of course, in each substrate, one electron pair orbital on the oxygen atom is antiperiplanar to the migrating bond as well to provide the much necessary push.

We learnt above that an oxygen atom (for that matter, a heteroatom) on one carbon and a leaving group on the adjacent carbon constituted a situation for bond migration from the oxygen-bearing carbon to the carbon bearing a leaving group with the loss of the latter. Throughout, an electron pair orbital on the oxygen was antiperiplanar to the migrating bond and the migrating bond, in turn, was antiperiplanar to the bond connecting the leaving group to the adjacent carbon. Let us consider a situation wherein there are two oxygen atoms on the same carbon and
each oxygen atom has one electron pair orbital antiperiplanar to the migrating bond on the same very carbon. This allows the migration to occur faster, probably twice as fast as the migration in a case with just one oxygen atom. Such situations arise in reactions of α-halo ketones and aryl-substituted 1,2-dicarbonyl compounds with oxygen-based nucleophiles such as the hydroxide ion.

For instance, 97 generates 98 on reaction with sodium hydroxide, wherein each oxygen has one electron pair antiperiplanar to the σ_{C–Ar} bond and, thus, making it labile for cleavage. Further, the σ_{C–Ar} bond is antiperiplanar to the σ_{C–Br} bond on the adjacent carbon. The combined consequence of these two geometrical dispositions is cleavage of the σ_{C–Ar} bond and attack of the aryl group on the carbon bearing bromine in S_N2 fashion in quick succession to form 99 as the sole product. The reaction is, therefore, stereolectronically controlled. The story with the transformation 100 → 102 is similar. The transformation 102 → 105 constitutes what we know as benzil-benzilic acid rearrangement, and it proceeds by following the same stereolectronic principles as the other rearrangements.

\[
\begin{align*}
\text{t-Bu} & \quad \text{H} & \quad \text{Br} & \quad \text{Ar} \\
\text{97} & \quad \text{} & \quad \text{} & \quad \text{} \\
\text{t-Bu} & \quad \text{H} & \quad \text{CO}_2 & \quad \text{Ar} \\
\text{99} & \quad \text{} & \quad \text{} & \quad \text{} \\
\text{t-Bu} & \quad \text{H} & \quad \text{Br} & \quad \text{Ar} \\
\text{100} & \quad \text{} & \quad \text{} & \quad \text{} \\
\text{t-Bu} & \quad \text{H} & \quad \text{CO}_2 & \quad \text{Ar} \\
\text{102} & \quad \text{} & \quad \text{} & \quad \text{} \\
\text{t-Bu} & \quad \text{H} & \quad \text{Br} & \quad \text{Ar} \\
\text{100} & \quad \text{} & \quad \text{} & \quad \text{} \\
\text{t-Bu} & \quad \text{H} & \quad \text{CO}_2 & \quad \text{Ar} \\
\text{102} & \quad \text{} & \quad \text{} & \quad \text{} \\
\text{ArCOCOAr} & \quad \text{O} & \quad \text{OH} & \quad \text{Ar} \\
\text{102} & \quad \text{} & \quad \text{} & \quad \text{} \\
\text{HO} & \quad \text{O} & \quad \text{O} & \quad \text{Ar} \\
\text{104} & \quad \text{} & \quad \text{} & \quad \text{} \\
\text{O} & \quad \text{Ar} & \quad \text{OH} & \quad \text{Ar} \\
\text{105} & \quad \text{} & \quad \text{} & \quad \text{}
\end{align*}
\]

Solvolysis with neighboring group participation in the presence of a nucleophile may be viewed as a reaction on a saturated carbon. There is, however, a difference: the carbon under attack by the external nucleophile in the present instance carries substantial positive charge on account of charge distribution through the neighboring group. We will understand this process by considering the solvolysis of the erythro-tosylate 106 in comparison with the solvolysis of the threo-tosylate 110 in acetic acid. Neighboring group participation in 106 leads to the chiral phenonium ion 107, which is captured by acetate ion on either of the two carbon atoms of the three-membered ring, as shown, and a 50:50 mixture of the erythro-acetates 108 and 109 is formed. Please note that 108 and 109 are one and the same (try
superimposing one onto the other) and, thus, the resultant product is optically active. A similar analysis of the solvolysis of 110 allows us to arrive at the two threo products 112 and 113 through the achiral phenonium ion 111. Since 112 is mirror image of 113, the resultant product mixture is optically inactive overall.

When the iodoacetate 114 was subjected to solvolysis in wet acetic acid containing silver acetate, the products were the cis-diol monoacetates 117a and 117b. Weakening of the \(\sigma_{C-I} \) bond through association of silver ion with the iodine atom is closely followed by the intramolecular capture of the incipient carbocation by the acetoxy group on the adjacent carbon to generate the acetoxonium ion 115. This is captured by water to generate 116, which collapses to a mixture of 117a and 117b. The compound 117 was used in the synthesis of (+)-crotanecine, a naturally occurring alkaloid [16].

The rearrangement of oxiranes to carbonyl species on treatment with Lewis acids provides yet another elegant example of neighboring group participation that culminates into excellent diastereocntrol. For instance, the oxirane 118 is smoothly transformed into 120 on treatment with BF\(_3\)/C\(_2\)OEt\(_2\). The key to the formation of a single product is concurrent heterolysis of the \(\sigma_{C-O} \) bond from the \(\beta \)-face and migration of the hydrogen as a hydride on the \(\alpha \)-face is as shown. Contrast to this is the formation of both 123 and 125 from 121. In this case, a small time lag between
the cleavage of the σ_{C-O} bond and the migration of hydrogen allows transient formation of the discrete carbocation 122, which allows migration of the angular methyl group, as shown, and the new carbocation 124 is formed. The loss of a proton from 124 leads to the formation of 125.

In the exo-2-norbornyl brosylate 126, the σ_{C-OBs} bond is antiperiplanar to σ_{C1-C6} bond. This allows acetolysis to proceed with neighboring group participation, as shown, leading to the formation of a 50:50 mixture of 129a and 129b from an optically active brosylate. Since 129a is mirror image of 129b, the product is optically inactive overall. The cleavage of σ_{C-OBs} bond under neighboring group participation of σ_{C1-C6} bond allows formation of the nonclassical carbocation [17, 18] 127 which could be viewed as a fast equilibrating 50:50 mixture of the classical carbocations [19] 128a and 128b, one being mirror image of the other. The exo-capture of 128a and 128b forms 129a and 129b, respectively.
The effect of an antiperiplanar arrangement of an electron-deficient bond and an electron-rich bond is so dramatic that several rearrangements can occur one after the other in quick succession. The acid-catalyzed 3-β-friedelanol (130) → 13(18)-oleanene (134) transformation is one such example among many. Protonation of the carbinol oxygen converts it into a strong leaving group. The α-hydrogen on C4, which is anti to the C–O bond, migrates, leading to the tertiary cation 132. Soon after, many angular group migrations take place to arrive at the angular tertiary cation 133, whose fate is only to undergo deprotonation, as shown, to form 134.

The enzyme-catalyzed polycyclization of squalene 135 produces dammaradienol 138, which is known to be the precursor of cholesterol. In the process, squalene oxide is the intermediate, which adopts the conformation as shown in 137, and rearranges, under acid catalysis, to 138 [20, 21]. Note that in the transformations 131 → 133 and 137 → 138, many SN2 reactions take place in tandem for the sole reason of stereoelectronically driven well-organized geometrical orientations of the reacting functional groups. Note that all the double bonds are trans, and also that two such consecutive bonds are 1,5-related to each other.
A cationic center may be derived from a variety of other sources such as acetal and alcohol on mixing with an acid. Treatment of the polyolefinic acetal 139 with stannic chloride in pentane gives an almost 50:50 mixture of the two racemic D-homosterooidal tetracyclic isomers 142. The first formed cationic species 140 is not chiral and, hence, the two faces of the nearest olefinic bond can react with it at equal ease. The conversion of the open chain 139 having no chiral centers into the tetracyclic species 142 having seven such centers and yet producing only two out of the total possible 64 racemates (i.e., four out of $2^7 = 128$ diastereomers) is a striking tribute to the power of stereoelectronic effects [22].

The allylic alcohol 143 furnishes the tetracyclic product 146 on treatment with stannic chloride in nitroethane at $-80 \, ^\circ\text{C}$. The first formed allylic cation 144 undergoes tandem cyclization with the remaining olefinic bonds to form the tertiary cation 145, which loses a proton to generate 146 [23].
In a more impressive polyene cyclization, reaction of the optically active allylic alcohol 147 with trifluoroacetic acid and ethylene carbonate followed by workup with K₂CO₃ in aqueous methanol furnished the optically active product 150. The reaction is initiated by a syn-selective S_N2 reaction with allylic rearrangement (S_N2′) and proceeds through the carbonate-trapped intermediate 149. Likewise, the reaction of the enantiomer of 147 furnished the enantiomer of 150. The cyclization step was essentially enantiospecific. The process involves total asymmetric synthesis due to a single chiral center in the starting allyl alcohol [24].

We have learnt that (a) the dihedral angle requirement for S_N2 reactions is 180° or close to it, (b) the 5-exo-trig reaction is favored over the 5-endo-trig reaction, and (c) axial electrophilic or nucleophilic attack on a double bond present in cyclohexene is favored over the corresponding equatorial attack. Keeping these principles in mind, we can proceed to analyze a few reactions that involve attack on a sp² center. Substrates such as 151 and 153 fail to react under basic conditions to form the furanones 152 and 154, respectively. Obviously, the oxy anion formed from the alcohol does not react with the enone in 5-endo-trig manner, a pathway that one
finds formally very appealing. Remember that oxy anions add rapidly to enones in bimolecular processes under otherwise similar reaction conditions. In contrast, 152 and 154 are formed readily under acidic conditions, and we must understand the compelling reason for the same. Under the acidic conditions of the reaction, protonation of the carbonyl oxygen in 151 leads to a resonance mixture of 155a and 155b. It is this 155b that allows now the 5-exo-trig closure, as shown, and the product 152 is formed with a great facility [25, 26].

In further revelation of the strong stereoelectronic requirement for the intramolecular S_N2 reaction, the hydroxy ester 156 furnished the lactone 157 only and none of the tetrahydrofuran product 158 on reaction with a base. Whereas the product 157 arises from the 5-exo-trig process involving attack of the oxy anion on the ester carbonyl function, the difficult 5-endo-trig process involving attack of the oxy ion at the olefinic carbon in conjugate fashion is required for the formation of 158 [25, 26].

When the species 159 and dimethyl 3-oxo-pentan-1,5-dicarboxylic acid (dimethyl acetone dicarboxylate) are taken together in aqueous acid, 164 is formed as the sole product. Hydrolysis leads to the dialdehyde 160, which undergoes intramolecular condensation to generate the iminium ion 161a, rewritten as 161b in the three-dimensional form. The enol from the dicarboxylate acts as a nucleophile and reacts with the above iminium ion on the axial face to generate 162, releasing the secondary amine function simultaneously. Intramolecular condensation of this secondary amine with the other aldehyde function forms the iminium ion 163, which is captured by the other enol form of the dicarboxylate, again on the axial face, and 164 is formed [27].
Addition of a nucleophile to a triple bond as in 165 may, in principle, lead to two different products 166a and 166b. The added nucleophile is anti to the released electron pair orbital in 166a and syn in 166b. The stereoelectronic effects favor the formation of 166a. That being the case, the process 166a → 165 must also be faster than the process 166b → 165; both of these processes are E1cB reactions. Following this, the transformation 167 → 168 under basic conditions was indeed discovered to be 50 times faster than the corresponding transformation 169 → 168 [28, 29]. Also, cis-dichloroethylene 170 is transformed into chloroacetylene 171 about 20 times faster than trans-dichloroethylene 172 [30].

The cis-dichloroethylene 170 reacts with sodium p-toluenethiolate (p-CH₃C₆H₄SNa) in the presence of sodium ethoxide to give cis-1,2-bis-p-tolylmercaptoethylene 175. This is in contrast to the behavior of trans-dichloroethylene which is recovered unchanged. The transformation 170 → 175 proceeds as shown, and there is evidence in favor of 171, 173, and 174 as the intermediates during the course of the reaction [31–33]. Trans-elimination is therefore favored over cis-elimination, indicating a decisive role of the stereoelectronic effects in such reactions.
Addition of a nucleophile to a nitrilium ion generates a product in which the released electron pair occupies the position on the nitrogen that is antī to the nucleophile. For instance, the N-anilinonitrilium ion 177, formed from solvolysis of the hydrazonyl bromide 176 in the presence of sodium acetate, gives Z-178. On heating, Z-178 is rapidly transformed into the amide 179 via isomerization to E-178 [34, 35]. Note that the acyl group migration from oxygen to nitrogen takes place in the last step of the whole process.

In the widely used Beckman rearrangement [36] that converts oximes and derivatives into amides, the group that migrates is the one that is antī to the \(\sigma_{N-O}\) bond. Also, the stereochemical integrity of the migrating group is completely retained in the product. Thus, the migration of \(R_1\) in 180 generates the nitrilium ion 182, which hydrolyses, via 183, to form the amide 184. When the migrating group can form a stable cation, fragmentation to the corresponding nitrile such as 180 → 185 takes place instead of the above migration.
In the Curtius rearrangement in which the acylazide 186 is transformed into the isocyanate 187 and molecular nitrogen, the migrating group retains its stereochemical integrity just as in the Beckman rearrangement. Steroelectronic effects therefore control the reaction because the migrating group is necessarily anti to the σ_{N-N^+} bond and, also, the migrating group is anti to an electron pair orbital on the carbonyl oxygen as illustrated in 188.

Thus, both the trans-addition and trans-elimination are strongly favored over the corresponding cis-variants due to stereoelectronic effects. In 1,2-migrations, the migrating group is always anti to the leaving group on the adjacent carbon.

References

Steric and Stereoelectronic Effects in Organic Chemistry
Yadav, V.K.
2016, XI, 211 p. 300 illus., 83 illus. in color., Hardcover