Contents

1 Introduction
- 1.1 Look Back on Optical Digital Data Storage
 - 1.1.1 Progress of Digital Data Storage
 - 1.1.2 From VCD to Blu-Ray Disc
- 1.2 Research and Development of Optical Storage in China
 - 1.2.1 Multi-wavelength and Multilevel Storage
 - 1.2.2 Volume Holographic Storage
 - 1.2.3 Near-Field Optical Storage
 - 1.2.4 Big Data Storage System Integration
 - 1.2.5 New Storage Materials and Medium
 - 1.2.6 Chinese Blue High Density Disc
- 1.3 The Advanced Efforts for Multi-dimension Optical Storage
 - 1.3.1 3-Dimension (3D) Optical Storage
 - 1.3.2 5-Dimensional Optical Storage
 - 1.3.3 Negative Refraction Index Materials Application to SIL 3-Dimensional Storage
 - 1.3.4 The Higher Order Radially Polarized Beams Application in SIL
 - 1.3.5 Other Schemes for Multi-value Optical Storage
- 1.4 Frontier Science and Technologies Related to Optical Storage
 - 1.4.1 Ultraviolet Optical Storage
 - 1.4.2 Plasmonic Optical Storage
 - 1.4.3 X-Ray Storage
 - 1.4.4 Nanoprobe and Molecular Polymer Storage
 - 1.4.5 Molecular Polymer Storage
 - 1.4.6 Persistent Spectral Holeburning
 - 1.4.7 Coherent Transient Memory
 - 1.4.8 Molecular Storage
 - 1.4.9 All-Optical Magnetic Recording
 - 1.4.10 Electronic Quantum Holography
 - 1.4.11 Scanning Electron Beam Record
2 Mechanism of Multidimensional Optical Storage
2.1 Photophysics and Photochemistry
 2.1.1 Light Absorption
 2.1.2 Luminescence
2.2 Photoinduced Electron Transfer Process
 2.2.1 Emission Lifetime
 2.2.2 Ground and Excited State Molecular Interactions
 2.2.3 Energy and Electron Transfer
2.3 Other Actions of Photon to Materials
 2.3.1 Nonlinear Optical Action
 2.3.2 Photoconductive and Photonic Polymers
 2.3.3 Photosynthesis
 2.3.4 Purple Photosynthetic
2.4 Photophysical Properties of Organometallic Polymers
2.5 Inorganic Photochemistry and Photocatalysis
 2.5.1 Electron Storage on ZnO Particles
 2.5.2 Particle Size and Absorption
 2.5.3 Laser Flash Photolysis
 2.5.4 Particle Size and Absorption Threshold
 2.5.5 Blue Shift of Absorption upon Illumination
 2.5.6 Reducing Reactions and Oxidizing Radicals
 2.5.7 Essential Criteria of Photochemical Reactions
 2.5.8 Main Types of Photochemical Reactions
 2.5.9 Solvents
 2.5.10 Direct Sensitized Photolysis
2.6 Reaction Control
 2.6.1 Side Reactions Can Easily Become the Major Track
 2.6.2 Quantum Yield and Chemical Yield
 2.6.3 Photochemical Reactions
 2.6.4 Alkenes
4 Super Resolution and Laser Sources ... 221
 4.1 Optical Super Resolution and Micro-aperture Laser 222
 4.2 Micro-aperture Semiconductor Laser ... 232
 4.2.1 Micro-aperture Laser for NFO Data Storage 232
 4.2.2 Vertical-Cavity Surface-Emitting Lasers (VCSEL)s 233
 4.2.3 Modeling of Nano-aperture VCSELS .. 234
 4.2.4 Design of the Nano-aperture VCSEL 236
 4.2.5 Numerical Model .. 238
 4.2.6 Calculation Results .. 239
 4.2.7 Speciality of Spectrum ... 243
 4.3 Optically Injected Quantum Dot Lasers .. 247
 4.3.1 Epitaxy Growth (MBE, MOVPE) .. 247
 4.3.2 QD-Lasers ... 249
 4.3.3 Optical Confinement Factor ... 250
 4.3.4 Gain and Threshold ... 251
 4.4 Quantum Dot Laser Model .. 257
 4.4.1 One-Parameter Bifurcation Diagrams 261
 4.4.2 Two-Parameter Bifurcation Diagrams and Path Continuation 264
 4.5 Impact of the Pump Current on the Dynamics 267
 4.5.1 Impact of Carrier Lifetimes on the Dynamics 268
 4.6 Photon Rate Equation .. 273
 4.6.1 High-Speed Quantum Dot Lasers .. 274
 4.6.2 Factors Limiting High-Speed Operation of QD Lasers 276
 4.6.3 Tunnel Injection and Acceptor Doping in QD Lasers 277
 4.6.4 Tunnel Injection Lasers with p-Doping 279
 4.7 Static/Dynamic Characteristics of QD Lasers 280
 4.7.1 Static Characteristics of QD Lasers 280
 4.7.2 Small Signal Modulation Response ... 283
 4.7.3 Dynamic Properties and α-Factor 285
 4.7.4 Quantum Dot Lasers Future Trends 287
 4.7.5 Edge Emitting and Vertical Cavity Quantum Dot Lasers 288
 4.7.6 Infrared Emission in Quantum Dot Lasers 290
 4.7.7 Extension of the Spectral Range of GaAs-Based Devices 291
 4.7.8 Quantum Dot Composites .. 292
 4.7.9 Advantages and Disadvantages of QD Lasers 292
 4.8 Femtosecond, UV, and Multiwavelength Lasers 293
 4.8.1 Femtosecond Laser ... 293
 4.8.2 Supercontinuum Generation (SCG) Subpicosecond Laser 294
 4.8.3 UV and Deep UV Lasers ... 294
6.1.2 Two Wavelength Two-Photon Absorption (Type 2)

6.2 Vertical Resolution of 3D Optical Storage

6.3 Stereo-Multidimensional Storage Medium

6.3.1 Stereo 3D Storage Medium

6.3.2 Multidimensional Holomem Materials

6.4 Multilayer Parallel Read/Write

6.4.1 WORM Multilayer Storage System

6.4.2 Multibeam Readout

6.5 Adaptive Aberration Correction

6.5.1 MEMS Mirror to Compensate Spherical Aberration

6.5.2 Residual Asymmetric Aberration Measurement

6.5.3 Correction Aberrations with Deformable Mirror of Liquid Crystal

6.6 Stereo Optical Solid State Memory

6.6.1 Two-Wavelength (ℏm + ℏm′) Two-Photon (Type 2) Optical Solid State Memory

6.6.2 Photochromical Multiwavelength and Multilevel 3D Optical Solid State Memory

6.7 Multivalued Polarization-Sensitive Storage

6.7.1 Data Rate of Phase Multilevel Recording

6.7.2 PRML for Phase Multilevel Signal Process

6.8 Multidimensional Codes

6.8.1 Product Codes

6.8.2 Products of Single Parity-Check Codes

6.8.3 Decoding of Product-SPC Codes

6.8.4 Multidimensional Parity-Check Codes

6.8.5 Burst-Error-Correction Capability of MDPCs with Iterative Soft-Decision Decoding

6.8.6 White Gaussian Noise Channel

6.8.7 Bursty Channels

6.8.8 Concatenated MDPC Codes and Turbo Codes

References

7 Volume Holography and Dynamic Static Speckle Multiplexing

7.1 Evolution of Volume Holographic Storage

7.1.1 Common Volume 3-Dimension (3-D) Holomems

7.1.2 Two-Wavelength Holography

7.1.3 Holographic Versatile Disc (HVD)

7.1.4 Advanced Structure and Performances

7.2 Performances and Evaluation of Medium

7.3 Classification and Comparison of Multiplexing Schemes

7.3.1 Present Volume Holographic Storage System

7.3.2 Comparison of Multiplexing Technology Schemes
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>Multiwavelength Volume Holography Storage</td>
<td>511</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Two-Wavelength Volume Holography Storage</td>
<td>511</td>
</tr>
<tr>
<td>7.4.2</td>
<td>3D Multiwavelength Medium</td>
<td>513</td>
</tr>
<tr>
<td>7.4.3</td>
<td>3D Multiwavelength Holography Storage Drive</td>
<td>513</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Exposure Process</td>
<td>515</td>
</tr>
<tr>
<td>7.4.5</td>
<td>Materials Reaction Characteristics</td>
<td>517</td>
</tr>
<tr>
<td>7.4.6</td>
<td>Recording Schedule Optimum</td>
<td>520</td>
</tr>
<tr>
<td>7.4.7</td>
<td>Holographic Encryption</td>
<td>526</td>
</tr>
<tr>
<td>7.5</td>
<td>Dynamic Speckle Static Multiplexing (DSSM)</td>
<td>531</td>
</tr>
<tr>
<td>7.6</td>
<td>Hybrid Speckle Multiplexing with DSSM</td>
<td>536</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Speckle-Angular Multiplexing Scheme</td>
<td>537</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Effect of the Dynamic and Static Speckle Multiplexing</td>
<td>538</td>
</tr>
<tr>
<td>7.6.3</td>
<td>Elastomer Mask Phase Multiplexing</td>
<td>541</td>
</tr>
<tr>
<td>7.6.4</td>
<td>The Improvement of Angle Multiplexing Sensitivity</td>
<td>545</td>
</tr>
<tr>
<td>7.6.5</td>
<td>The Improvement of Wavelength Multiplexing Sensitivity</td>
<td>545</td>
</tr>
<tr>
<td>7.6.6</td>
<td>Selectivity Sensitive of Medium Thickness</td>
<td>546</td>
</tr>
<tr>
<td>7.7</td>
<td>The Relationship of DSSM Selectivity and Speckle Size</td>
<td>547</td>
</tr>
<tr>
<td>7.7.1</td>
<td>Speckle-Angle Multiplexing Selectivity and Speckle Size</td>
<td>550</td>
</tr>
<tr>
<td>7.7.2</td>
<td>The Relationship Between Dynamic Speckle Multiplexing Selectivity and Speckle Size</td>
<td>551</td>
</tr>
<tr>
<td>7.7.3</td>
<td>The Improvement Mode for Laser with Speckle Multiplexing Technology</td>
<td>553</td>
</tr>
<tr>
<td>7.8</td>
<td>Sequence Exposure Method in DSSM System</td>
<td>556</td>
</tr>
<tr>
<td>7.8.1</td>
<td>The Recording Timing Sequence of Multitrack Overlapping</td>
<td>556</td>
</tr>
<tr>
<td>7.8.2</td>
<td>The Recording and Erasing</td>
<td>561</td>
</tr>
<tr>
<td>7.8.3</td>
<td>Exposure Time Sequence for Dynamic Speckle Multiplexing System</td>
<td>562</td>
</tr>
<tr>
<td>7.8.4</td>
<td>Simulation and Experiment of Single Track of Overlapping Sequence Time Exposure</td>
<td>567</td>
</tr>
<tr>
<td>8</td>
<td>Multitrack Superposed and Polarized Recording</td>
<td>573</td>
</tr>
<tr>
<td>8.1</td>
<td>Multitrack Superposed 3D Holomem</td>
<td>573</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Exposure Time Sequence of Multitracks with DSSM</td>
<td>573</td>
</tr>
<tr>
<td>8.2</td>
<td>The Noise Analysis and Restriction</td>
<td>582</td>
</tr>
<tr>
<td>8.2.1</td>
<td>The Noise Generated by Multiple Reflections from Optical Components</td>
<td>582</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Speckle Noise</td>
<td>583</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Scattering Noise of the Recording Medium</td>
<td>583</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Noise of the Detector and Circuit</td>
<td>583</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Crosstalk Noise</td>
<td>584</td>
</tr>
</tbody>
</table>
8.2.6 The Noises of the Speckle Multiplexing System 584
8.2.7 The Generation of the Scattering Noise 585
8.2.8 The Methods of Improving SNR and Reducing
the Scattering Noise ... 587
8.2.9 The Experiment of Recording the Scattering Seed
with Weak Energy ... 589
8.2.10 The Generation of the Scattering Noise During
Retrieving .. 593
8.2.11 Diarylethene and Application 599
8.3 The Dynamic Model of the Recording and Retrieving 600
8.4 Rewritable Performances .. 609
8.4.1 The Analysis for Single Hologram Storage
on the Diarylethene ... 609
8.4.2 The Rewritable Experiments of the Diarylethene 612
8.4.3 The Experiments of Multiplexing Storage
of the Diarylethene ... 613
8.4.4 Dithienylethenes Application in Polarization
Holographic Storage ... 614
8.5 Polarized 3D Volume Holomem 616
8.5.1 Dithienylethenes Polarized Holomem Performances 616
8.5.2 Analysis for Polarized Holography Field 618
8.6 Material Preparation for Polarized Storage 624
8.6.1 Polarized Holographic Storage Experiment
with Dithienylethenes .. 626
8.6.2 The Polarization Multiplexing Characteristic
of Dithienylethenes ... 626
8.7 Orthogonal Polarized Dual-Channel Holomem 629
8.7.1 Based on Polarized Light Dual-Channel
Storage System .. 629
8.7.2 Experiment for Retrieving of Nonvolatile Data 632
8.7.3 Two-Photon Recording and One-Photon Readout
Experiment .. 633
8.7.4 Two-Wavelength Readout Experiment 636
8.7.5 Other Dual-Channel Two-Wavelength Holomem 641
8.7.6 Dual-Channel with Polarization Multiplexing
Holomem .. 643
8.8 Focusing Properties with High Polarization Orders 648
References .. 650

Appendix A: Constants of Physics and Chemistry 651
Appendix B: Mathematical Symbols 655
Appendix C: Calculation Symbols 659
Multi-dimensional Optical Storage
Xu, D.
2016, XIX, 679 p. 565 illus., 92 illus. in color., Hardcover
ISBN: 978-981-10-0930-3