Contents

Part I The Basic Theory and Methodology

1 The Basic Theory of P-process at Sediment/Water Interface (SWI) in Lake 3
 1.1 “Internal P-loading” and P-release Mechanisms in Lake Sediments 3
 1.2 Diffusive Gradients in Thin Films (DGT) Technique and the Development Trend for the Application at SWI or Rhizosphere 5
 1.3 The Uptake and Accumulation Mechanisms for Elements at the Rhizosphere of Aquatic Plant in Lake 15
 1.4 Summary .. 19
References ... 20

2 Problem Introduction, Research Idea, and Studying Zone 27
 2.1 Problem Introduction 28
 2.2 The Research Idea and the General Design for DGT Research 30
 2.3 Studying Zones in Dianchi and Erhai Lakes .. 32
 2.4 Summary .. 34
References ... 35

3 The Research Methodology .. 39
 3.1 The Design for DGT Probe and Piston .. 40
 3.2 The Test Method for DGT Piston and Probe in Sediments of Dianchi Lake and the Subsequent Procedures .. 40
 3.3 The DGT Method (in Situ or in Rhizobox) for the P-Uptake Process by Roots of Aquatic Plants in Erhai Lake 43
 3.3.1 The in situ DGT Test .. 43
 3.3.2 The DGT Test in Rhizobox .. 46
 3.4 The Computer Programs for DGT (DIFS, Visual MINTEQ, and Image J.1.38 E Softwares) and the Operation/Experiment Methodology .. 49
3.5 The Computer Imaging Densitometry (CID) Technique for the Analysis of Sulfide-Microniches and DGT-S(-II) Profile .. 54
3.6 Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) Technique for Gel Analysis .. 56
3.7 The Analysis Methods for Physicochemical Properties of Lake Sediments ... 61
3.8 The Main Scientific Problem and Technological Difficulty to Be Solved ... 64
3.9 Summary .. 69
References ... 69

Part II “Internal P-Loading” at SWI of Dianchi Lake

4 The “Internal P-Loading” at SWI Assessed by DGT Technique ... 75
4.1 Fe-Remobilization and the Solubility Assessment for Fe-Sulfide Mineral ... 76
4.2 P-Remobilization and “Internal P-Loading” 80
4.3 P-DIFS Simulation and Sediment-P Reactivity 86
4.4 Summary .. 90
References ... 90

5 The Coupled Fe–S–P Biogeochemical Mechanism for P-Release and Sulfide Microniche in Sediments Assessed by DGT–CID Technique (Dianchi Lake) ... 93
5.1 The Distribution Character of Sulfide Microniche and Biogeochemical Mechanism in Sediments Based on DGT–CID Technique ... 94
5.2 The Coupled Fe–S–P Process for P-Release Mechanism in Sediment Microzone ... 101
5.3 Summary .. 104
References ... 104

6 The P-release Risk Predicted by Chemical Image of Fe in Sediment Porewater Measured by DGT/LA-ICP-MS and Fe-Microniches ... 107
6.1 The Measurement Method for Fe at SWI Using SPR-IDA DGT and LA-ICP-MS with High Spatial Resolutions ... 107
6.2 DGT-Fe Distribution Character of Chemical Images ... 111
6.3 The Proportion of DGT Flux Related to Fe-Microniche in “Hot Spots” of the Total DGT Flux in Microzone and the Implication ... 116
6.4 The Release of P and Trace Metals Predicted by Fe-Microniches ... 119
6.5 Summary .. 120
References ... 121
Part III The P-behavior at the Interface of Sediment/Root of Aquatic Plants (Erhai Lake)

7 The Uptake and Accumulation Mechanisms of P-Predicted by In Situ DGT Test at the Rhizosphere of Aquatic Plant 125
 7.1 P-Concentrations in Sediment–Porewater–Plant Samples and the DGT Measurement Results 126
 7.2 The Linear Relationship Between DGT Measurement and P-Content in Plant Tissues for the Prediction of P-Uptake ... 128
 7.3 The Quantification for P-Uptake by Root of Aquatic Plant Using DGT Flux .. 140
 7.4 Summary .. 143
 References .. 143

8 The Uptake and Accumulation of P Assessed by DGT/Rhizobox Method ... 145
 8.1 P-Concentration in Sediment–Porewater–Plant Samples and the Derivation of C_E and R_{diff} 146
 8.2 The Linear Regression of DGT Measurement Against P-Content in Plant Tissues for the Predictor of Bioavailability ... 150
 8.3 The Significance of DGT as the Surrogate of Root for P-Uptake and the Implication for Ecological Restoration of Eutrophic Lake ... 159
 8.4 Summary .. 160
 References .. 161

9 Conclusion and Prospect .. 163
 9.1 The DGT and Related Techniques for Lake Research 163
 9.2 The Environmental Process of P and Related Elements in Sediment or Rhizosphere Revealed by DGT Technique and the Significance ... 165
 9.2.1 The Mechanism and Release Intensity of “Internal P-Loading” and Kinetic Exchange of P at DGT/Porewater/Sediment Interface ... 165
 9.2.2 Sulfide Microniche for the Coupled Fe–S–P Biogeochemical Process and the Chemical Image of Labile Fe for the Prediction of P-Release .. 165
 9.2.3 DGT as a Prediction Tool for P-Bioavailability and Transfer at the Sediment/Root Interface 166
 9.2.4 The Significance for DGT Technique as the Ecological Indicator for P-Process at Sediment or Rhizosphere in Lakes .. 167
 9.3 Further Work—the New Technique Coupled with DGT for Sediment Microzone or Rhizosphere 168
 9.4 Summary .. 169
DGT-based Measurement of Phosphorus in Sediment Microzones and Rhizospheres
Wang, S.; Wu, Z.
2016, XXVII, 170 p. 70 illus., 40 illus. in color., Hardcover
ISBN: 978-981-10-0720-0