Contents

1 Introduction ... 1

1.1 Inorganic Medicines ... 1

1.2 Lessons from Cisplatin and Its Derivatives 3

1.2.1 Overview of Platinum Drugs .. 3

1.2.2 Anticancer Mechanism of Cisplatin 4

1.2.3 Transplatin and Its Anallogues 9

1.2.4 Cisplatin Resistance and Side Effect Problems 10

1.3 The Chemistry and Anticancer Properties of Gold 11

1.3.1 The Chemical Properties of Gold Complexes [32] 11

1.3.2 Gold Complexes Inhibit Thiol-Containing Enzyme Activities 13

1.3.3 Current Status of Gold(I) Anticancer Agents 21

1.3.4 Current Status of Anticancer Gold(III) Complexes 26

1.4 The Chemistry and Anticancer Properties of Platinum 31

1.4.1 The Chemical Properties of Platinum Complexes 31

1.4.2 Physiologically Stable Platinum(II) Complexes as Anticancer Agents 34

1.5 The Chemistry of N-Heterocyclic Carbene Ligands 40

1.5.1 Electronic Properties of NHC Ligands 41

1.5.2 Steric Effects of NHC Ligands 41

1.5.3 Synthesis of NHC Ligands [125] 42

1.5.4 Synthesis of Metal-NHC Complexes 43

1.6 Luminescent Properties of Platinum(II) and Gold(I)/(III) Complexes 45

1.7 Fluorescent Thiol Probes ... 47

References ... 47
2 Experimental Section

2.1 Materials and Instrumentation

2.2 X-Ray Crystallography

2.2.1 Crystal Growth

2.2.2 Single Crystal Analysis

2.3 Stability Testing

2.3.1 UV–Vis Absorption Measurements

2.3.2 ESI-MS Measurements

2.3.3 1H NMR Measurements

2.4 Emission Measurements

2.4.1 Emission Spectra Measurements

2.4.2 Emission Lifetime Measurements

2.5 Fluorescence Microscopy

2.6 Cell Culture and Cytotoxicity Studies

2.6.1 Cell Subculture

2.6.2 MTT Assay

2.7 Gel Mobility Shift Assay

2.8 Spectroscopic Binding Studies

2.8.1 Determination of DNA-Binding Constants

2.8.2 Binding with Proteins

2.9 Transfection

2.10 Western Blot

2.11 Inductively Coupled Plasma Mass Spectrometry

2.12 Tube Formation Assay

2.13 In Vivo Antitumor Study

References

3 Gold(III) Complexes Containing N-Heterocyclic Carbene Ligand Serve as Dual Fluorescent Thiol “Switch-On” Probe and Anticancer Agent

3.1 Introduction

3.2 Experimental Section

3.2.1 Materials and Instrumentation

3.2.2 Synthesis and Characterization of Gold Complexes

3.2.3 Reactions with GSH

3.2.4 Luminescent Properties of 3.9

3.2.5 Anticancer Properties

3.3 Results and Discussion

3.3.1 Synthesis and Characterization

3.3.2 Reactions with GSH

3.3.3 Emission Properties of 3.9 Toward Thiols

3.3.4 Anticancer Properties

3.4 Conclusion

References
4 A Binuclear Gold(I) Complex with Mixed Bridging Diphosphine and Bis(N-Heterocyclic Carbene) Ligands Shows Favorable Thiol Reactivity and Effectively Inhibits Tumor Growth and Angiogenesis In Vivo ... 101
4.1 Introduction .. 101
4.2 Experimental Section .. 102
 4.2.1 Materials and Instrumentation 102
 4.2.2 Synthesis and Characterization of Complexes 103
 4.2.3 Biological Application ... 106
4.3 Results and Discussion .. 112
 4.3.1 Synthesis and Characterization 112
 4.3.2 Stability Toward Blood Thiols and In Vitro Cytotoxicity 112
 4.3.3 Inhibition of Thioredoxin Reductase 116
 4.3.4 Inhibition of Cancer Stem Cell Activity 119
 4.3.5 In Vivo Antitumor Activities 121
 4.3.6 Safety Pharmacology Study 127
4.4 Conclusion .. 131
References .. 131

5 Luminescent Organoplatinum(II) Complexes Containing Bis(N-Heterocyclic Carbene) Ligands Selectively Target Endoplasmic Reticulum and Induce Potent Phototoxicity 135
5.1 Introduction .. 135
5.2 Experimental Section .. 136
 5.2.1 Materials and Methods ... 136
 5.2.2 Experimental Procedure and Compound Characterization 136
 5.2.3 Stability Toward Physiological Thiols 139
 5.2.4 Photo-physical Properties and Application in Protein Binding and Cell Imaging 140
 5.2.5 Anticancer Properties .. 142
5.3 Results and Discussion .. 144
 5.3.1 Synthesis of the Complexes 144
 5.3.2 Stability Test .. 147
 5.3.3 Anticancer Properties .. 153
 5.3.4 Phototoxicities .. 158
5.4 Conclusion .. 159
References .. 161

6 Summary and Evaluation ... 163
Anti-Cancer N-Heterocyclic Carbene Complexes of Gold(III), Gold(I) and Platinum(II)
Thiol "Switch-on" Fluorescent Probes, Thioredoxin Reductase Inhibitors and Endoplasmic Reticulum Targeting Agents
Zou, T.
2016, XIII, 164 p. 179 illus., 79 illus. in color., Hardcover