Contents

1 Introduction .. 1
 1.1 Importance of Fault Diagnosis 1
 1.2 Induction Motor 2
 1.3 Induction Motor Fault Analysis 3
 1.4 Current Signature Analysis 4
 1.5 Objective of the Book 5
 1.6 Books at a Glance 5

2 Induction Motor and Faults 7
 2.1 Introduction 7
 2.2 Construction 9
 2.3 Operation ... 11
 2.4 Faults: Causes and Effects 12
 2.5 Broken Rotor Bar Fault 13
 2.5.1 General Description of Broken Rotor Bar 13
 2.5.2 Causes of Broken Rotor Bar 13
 2.5.3 Effect of Broken Rotor Bar 14
 2.6 Rotor Mass Unbalance 15
 2.6.1 General Description of Rotor Mass Unbalance 15
 2.6.2 Classification of Mass Unbalance 16
 2.6.3 Effect of Rotor Mass Unbalance 17
 2.7 Bearing Fault 18
 2.8 Stator Fault 20
 2.8.1 Stator Winding Fault 20
 2.8.2 Causes and Effects of Stator Winding Faults 22
 2.9 Single Phasing Fault 23
 2.9.1 Causes of Single Phasing Fault 23
 2.9.2 Effects of Single Phasing Fault 23
2.10 Crawling
2.10.1 General Description
2.10.2 Causes of Crawling
2.10.3 Effects of Crawling
2.11 Over Voltage, Under Voltage, Overload, and Blocked Rotor
2.12 Condition Monitoring and Its Necessity

3 Analytical Tools for Motor Fault Diagnosis
3.1 Introduction
3.2 Existing Techniques for Fault Analysis of Induction Motor
3.2.1 Thermal Analysis
3.2.2 Chemical Analysis
3.2.3 Acoustic Analysis
3.2.4 Torque Analysis
3.2.5 Induced Voltage Analysis
3.2.6 Partial Discharge Analysis
3.2.7 Vibration Analysis
3.2.8 Current Analysis
3.3 Signal Processing Tools for Fault Analysis
3.3.1 Fast Fourier Transform (FFT)
3.3.2 Short-Time Fourier Transform (STFT)
3.3.3 Wavelet Transform (WT)
3.3.4 Hilbert Transform (HT)
3.3.5 CMS Rule Set
3.3.6 Radar Analysis of Stator Current Concordia
3.4 Research Trend in Fault Analysis
3.5 Conclusion

4 Broken Rotor Bar
4.1 Introduction
4.2 Broken Rotor Bar Fault
4.3 Diagnosis of Broken Rotor Bar Fault
4.4 Diagnosis Through Radar Analysis of Stator Current Concordia
4.5 Concordia in Park Plane at Steady State
4.5.1 Concordia in Park Plane
4.5.2 Pattern Generation and Inference
4.5.3 CMS Rule Set
4.6 Experimentation
4.7 Concordia in Park Plane with Transient Signals at Starting
4.8 Radar of Starting Transients at Starting
4.8.1 Identification of Broken Rotor Bar Fault
4.9 Algorithm for Concordia and Radar-Based Diagnosis of Broken Rotor Bar .. 63
4.10 Diagnosis Through Envelope Analysis of Motor Startup Current Using Hilbert and Wavelet Transform 66
4.10.1 Instantaneous Frequency and Hilbert Transform........ 67
4.10.2 Envelope Detection .. 68
4.10.3 Methodology ... 68
4.10.4 Discrete Wavelet Transform-Based Assessment 70
4.10.5 Advantages and Disadvantages 77
4.11 Conclusion .. 77
References ... 77

5 Rotor Mass Unbalance ... 79
5.1 Introduction .. 79
5.2 Rotor Mass Unbalance 80
5.3 Mathematical Tools Diagnosis of Rotor Mass Unbalance ... 81
5.4 FFT-Based Diagnosis of Steady-State Motor Vibration and Current Signatures 81
5.5 Current Signature Analysis 83
5.6 Vibration Analysis ... 86
5.7 Concordia-Based Diagnosis by Steady-State Stator Current in Park Plane ... 88
5.7.1 Concordia in Park Plane 88
5.7.2 Pattern Generation and Inference 89
5.7.3 CMS Rule Set ... 89
5.8 Concordia-Based Assessment of Stator Current in Park Plane at Starting ... 90
5.9 Radar Analysis of Stator Current in Park Plane at Starting 90
5.9.1 Radars in Park Plane 91
5.9.2 Algorithm for Assessment of Rotor Mass Unbalance and Broken Rotor Bar Faults 91
5.10 Discrete Wavelet Transform-Based Fault Diagnosis Using Starting Current at No Load. 94
5.11 Diagnosis by PDD of Reconstructed Starting Current After Wavelet Transform 100
5.12 Conclusions .. 103
References ... 103

6 Stator Winding Fault ... 105
6.1 Introduction .. 105
6.2 Stator Winding Fault 106
6.3 Useful Analytical Tools for Stator Winding Fault Diagnosis ... 106
6.4 Diagnosis of Inter-turn Short Circuit Fault Using Negative Sequence Component of Stator Current at Steady State ... 107
6.5 FFT-Based Inter-turn Short Circuit Analysis
of Steady-State Stator Current 110
6.5.1 FFT-Based Assessment 112
6.5.2 Observations .. 113
6.5.3 Inference ... 114
6.6 CWT- and DWT-Based Inter-turn Short Circuit
Assessment Using Transient Current 114
6.6.1 Wavelet Transform .. 115
6.6.2 Discrete Wavelet Transform (DWT) 115
6.6.3 Energy Calculation ... 115
6.6.4 Results and Discussions 117
6.6.5 Inference ... 120
6.7 Stator Winding Fault Diagnosis By Starting Current
Transient Analysis Through Statistical Parameters 121
6.7.1 Skewness and Kurtosis 121
6.7.2 Results and Observation 122
6.7.3 Algorithm .. 122
6.8 Wavelet Transformation-Based Stator Current Assessment
in Park Plane ... 123
6.8.1 Theoretical Development 123
6.8.2 RMS Values of Approximate and Detail
Coefficients .. 125
6.8.3 Observations ... 131
6.9 Conclusion .. 134
References ... 135

7 Single Phasing of an Induction Motor 137
7.1 Introduction .. 137
7.2 Single Phasing Fault .. 138
7.3 Diagnosis of Single Phasing Fault 138
7.4 Single Phasing Fault Detection by Assessment
of Phase Angle Shift ... 139
7.4.1 Theory ... 139
7.4.2 Experimentation .. 139
7.4.3 Results and Discussions 140
7.5 Detection of Single Phasing by Steady-State Current
Concordia and Radar Analysis 141
7.5.1 Steady-State Concordia Analysis Using CMS
Rule Set .. 141
7.5.2 Radar Analysis ... 143
7.6 Conclusion .. 146
References ... 146
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Crawling of an Induction Motor</td>
<td>147</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>147</td>
</tr>
<tr>
<td>8.2</td>
<td>Crawling in Induction Motor</td>
<td>147</td>
</tr>
<tr>
<td>8.3</td>
<td>Diagnosis of Crawling of an Induction Motor by Feature Pattern Extraction of Stator Current Concordia</td>
<td>148</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Concordia in Park Plane</td>
<td>148</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Pattern Generation and Inference</td>
<td>149</td>
</tr>
<tr>
<td>8.3.3</td>
<td>CMS Rule Set for Harmonic Assessment in Park Plane</td>
<td>149</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Results and Discussions</td>
<td>150</td>
</tr>
<tr>
<td>8.4</td>
<td>Conclusion</td>
<td>151</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>151</td>
</tr>
<tr>
<td>9</td>
<td>Induction Motor Fault Diagnosis: General Discussion and Research Scope</td>
<td>153</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>153</td>
</tr>
<tr>
<td>9.2</td>
<td>Faults, Analytical Tools and Signals Used in the Book</td>
<td>154</td>
</tr>
<tr>
<td>9.3</td>
<td>General Discussion on Induction Motor Fault Diagnosis</td>
<td>155</td>
</tr>
<tr>
<td>9.4</td>
<td>Main Achievements</td>
<td>156</td>
</tr>
<tr>
<td>9.5</td>
<td>Research Scope</td>
<td>156</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>157</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>159</td>
</tr>
</tbody>
</table>