1 General Problem of Dynamics of Crank-Piston Mechanism with Clearances in Kinematic Pairs 1
 1.1 Analysis of Machines and Mechanisms Used for Oil and Gas Transportation .. 1
 1.2 Review of Some Scientific Works on Joint Mechanisms with Clearances and Crank-Piston Mechanisms 2
 1.3 Dynamic Model of Crank-Piston Mechanism with Clearances in Kinematic Pairs .. 3
 1.4 Classification of Slider Motion in Cylinder with Clearances 5
 1.5 Dynamic Model Piston-Cylinder of Sliding Kinematic Pair with Clearances of Crank-Piston Mechanism 9
 1.6 Real Dynamic Model of Crank-Piston Mechanism with Clearances in Three Kinematic Pairs 10
 1.7 Movements of Crank-Piston Mechanism with Consideration of Clearances in Three Kinematic Pairs 13

2 Dynamic Research of Crank-Piston Mechanism with Clearances in Two Kinematic Pairs 17
 2.1 Dynamic Research of Crank-Piston Mechanism with Clearances in Two Kinematic Pairs 17
 2.2 Calculation of Crank-Piston Mechanism Kinematic Parameters ... 19
 2.3 The Forces Acting on the Crank-Piston Mechanism 21
 2.4 The Kinetic Energies of Crank-Piston Mechanism with Clearances in Two Kinematic Pairs 23
 2.5 Differential Equations of Crank-Piston Mechanism Motions ... 29
 2.5.1 Definition of Reduced Moment of Mechanism 30
 2.5.2 Differential Equation of Mechanism, When $\Delta_1 = \Delta_2 = 0$.. 30
 2.6 Electromechanical Parameters of Motor and Equations of Motion .. 31
2.7 Differential Equations of Basic and Additional Motions of Crank-Piston Mechanism .. 34
2.8 Calculation of Crank-Piston Mechanism Generalized Forces .. 64
2.9 Calculation of Reaction and Friction Forces of Crank-Piston Mechanism with Clearances in Kinematic Pairs .. 70
2.10 Recommendation and Conclusion .. 74

3 The Operational Characteristics (Friction, Wear) in Kinematic Pairs of Crank-Piston Mechanism ... 77
3.1 Introduction .. 77
3.2 Friction in Kinematic Pairs of Hinged Mechanisms 78
 3.2.1 Friction in the Rotary Kinematic Pair ... 79
3.3 The Wear Investigation Issue in Four-Bar Crank-Piston Mechanism with Clearances in Rotary Kinematic Pairs 87
 3.3.1 Calculation of Wear in Kinematic Pair of Crank-Piston Mechanism .. 89

4 Research of Operational Characteristics Problem (Cracks Formation) of Crank-Piston Mechanism ... 95
4.1 Introduction .. 95
4.2 Basic Part of Cracks Formation of Crank-Piston Mechanism 96
 4.2.1 Research of Cracks Formation Process in Coupler of Crank-Piston Mechanism .. 99

5 Research of Operational Characteristics of Crank-Piston Mechanism by Computer Engineering ... 105
5.1 Describing the Basic and Additional Motions of Crank-Piston Mechanism Simultaneous Differential Equations .. 105
5.2 Analysis of Crank-Piston Mechanism Operating Characteristic by Computer Engineering ... 111
5.3 Automated Transition from One Mode to Another at Dynamic Study of Crank-Piston Mechanism ... 115
5.4 Dynamic Research of Program Complex of Crank-Piston Mechanism with Clearances .. 117
5.5 Dynamic Study Crank-Piston of the Mechanism with Clearances with Consideration of Characteristics .. 119
5.6 Research of Operational Characteristics Influence on Parameters of Crank-Piston Mechanism Elements ... 120

6 Dynamic Analysis of Crank-Piston Mechanism with Consideration of Impacts in Kinematic Pairs ... 129
6.1 Introduction .. 129
6.2 On Dynamic Model of Crank-Piston Mechanism 131
6.3 Study of Impacts in Kinematic Pairs of Crank-Piston Mechanism with Clearances .. 132
6.4 Definition of Colliding Links Velocities After the Impact Due the Absolute Smoothness Hypothesis 139
6.5 Definition of Colliding Links Velocity After the Impact Due Instant (Viscous) Friction Coefficient Hypothesis 140
6.6 Definition of Colliding Link’s Velocities After Impact by Considering of Dry Friction 141
6.7 Friction at Impact [79] ... 141
6.8 Change of Kinetic Energy at Impact 143
6.9 Dynamic Study of Crank-Piston Mechanism with Clearances and Impacts .. 143

7 The Study of Cranks-Piston Mechanisms with Taking into Account the Clearances and Elasticity of Links 151
7.1 Introduction .. 151
7.2 Elastic Deformation of Crank-Piston Mechanisms Coupler 153
7.3 Definition of Reduced Stiffness Coefficient of Crank-Piston Mechanism .. 162
7.4 Differential Equation of Cranks-Piston Mechanism Motion with Consideration of Clearances and Elasticity of Links 167
7.5 Oscillations of Crank-Piston Mechanism with Elastic Links 169
7.6 The Influence of Viscous Friction Force on Crank-Piston Mechanism Operation Process 173
7.7 Dynamic Study of the Crank-Piston Mechanisms with Elastic Links by Computer Engineering 175

8 Dynamic Research of Crank-Piston Mechanism with Clearances in Kinematic Pairs and Consideration of Elasticity of Links with Concentrated Masses .. 183
8.1 Introduction .. 183
8.2 Conditions for Mechanism’s Links Mass Distribution 184
8.3 Dynamics of Concentrated Masses Crank-Piston Mechanism with Rigid Links .. 185
8.4 Method for Determining the Stiffness Coefficients of Concentrated Masses Cranks-Piston Mechanism 191
8.5 Determination of Compliance Coefficients of Cranks-Piston Mechanism with Clearances 193
8.6 Dynamics of Cranks-Piston Mechanism with Taking into Account the Elasticity of Concentrated Masses Links 199
8.7 Experimental Study Crank-Piston Mechanism Operation Characteristics by Computer Engineering 201
9 Research of Kinematic and Dynamic Errors of Crank-Piston Mechanisms

9.1 Introduction .. 207
9.2 Errors of Mechanism and Their Determination Methods 208
9.3 Differential Method for Determination of Mechanism Errors 209
9.4 Research of Crank-Piston Mechanism Dynamical Precision 214

General Conclusions and Recommendations 219

Curriculum Vitae .. 223

References ... 237
Dynamics of Crank-Piston Mechanisms
Davitashvili, N.; Bakhshaliev, V.
2016, IX, 242 p. 75 illus., 13 illus. in color., Hardcover
ISBN: 978-981-10-0322-6