
Preface

McKean and I determined all possible boundary conditions at 0 for the Brownian
motion in (0, ∞) and discussed the construction of the sample functions of the
Markov processes corresponding to the boundary conditions [1]. The jumping-in
measure k appearing in the boundary condition has to satisfy

Z 1

0
ðb ^ 1ÞkðdbÞ\1: ð1Þ

This conditions turns out to be

Z 1

0
ðsðbÞ ^ 1ÞkðdbÞ\1 ð2Þ

for the diffusion in (0, ∞) with the generator

G ¼ d
dm

d
ds

ð3Þ

if we have

sð0Þ[ �1; mð0; 1Þ\1 and sð1Þ ¼ 1; ð4Þ

as we discussed in that paper. A few years ago, J. Lamperti raised the following
question in connection with his work on branching processes.
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What condition should the jumping-in measure k satisfy in case mð0; 1Þ ¼ ∞ in
(4)?

By intuitive argument, I conjectured that the condition would be

Z 1

0
Ebð1� e�r0ÞkðdbÞ\1; r0 ¼ hitting time for 0

or equivalently

Z 1

0

Z b

0
mðn; 1Þ dsðnÞ ^ 1

� �
kðdbÞ\1: ð5Þ

The purpose of this lecture is to solve this problem for the general Markov
process with reasonable conditions by introducing the notion of the Poisson point
process attached to the Markov process and to derive (2) and (5) as its special cases.

Let Yt(ω) be a homogeneous Lévy process with paths increasing only with
jumps.

Then,

Eðe�aYtÞ ¼ e�t
R1
0

ð1�e�auÞnðduÞ ð6Þ

where n is the Lévy measure of the process and

Z 1

0
ðu ^ 1ÞnðduÞ\1: ð7Þ

Let Dω be the discontinuity points of Yt and consider the random set

GðxÞ ¼ fðt; Ytþ ðxÞ � Yt�ðxÞÞ; t 2 Dxg:

This is a countable set in T × U, T = U = [0, ∞). It is well known that

(a) The number #(E \ G) of points in E \ G is Poisson distributed with the mean:

Z
E
dt nðduÞ

for every Borel set E in T × U (a random variable ≡ ∞ is regarded as Poisson
distributed with mean = ∞) and

(b) #(Ei \ G), i = 1, 2, …, n are independent for disjoint Borel sets Ei in T × U.

These two conditions characterize the probability law of the random set Gω.
Instead of considering the random set Gω, we can consider the point process

X�ðxÞ where XtðxÞ is defined only on Dω and
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XtðxÞ ¼ Ytþ ðxÞ � Yt�ðxÞ for t 2 Dx

for each ω. Then, Gω is the graph of the path of X∙. A point process in general is a
random process whose sample function is defined only on a countable subset of the
time interval depending on the sample.

The values of a point process need not be real. We can consider a point process
whose values are taken from a general measurable space U. Let n be an arbitrary σ-
finite measure on U. Then, a point process whose values are in U is called a Poisson
point process with characteristic measure n, if its graph G = GX satisfies the
conditions (a) and (b) mentioned above. We can define Poisson point processes in a
qualitative way and derive (a) and (b) from the definition, as we shall do in this
note.

In case the total measure n(U) is finite, the domain of the definition of the sample
function of the Poisson point process with characteristic measure n is a discrete set
a.s. and its structure is simple. This was discussed by K. Matthes, J. Kersten, and
P. Pranken [2–4]. It is a generalization of the point process arising from a com-
pound Poisson process.

If f : U → U1 is measurable and if X is a Poisson point process: T → U with
characteristic measure n, then the composition f · X is also a Poisson point process
with characteristic measure nf−1.

Let Xt be a Markov process on a locally compact metric space S and a(2S) be a
fixed state. Let A(t) be a local time process of Xt at a. Then, A

−1(t) is a homogeneous
Lévy process with increasing paths such that Pa(A

−1(0) = 0) = 1.
Let X0

t be a Markov process obtained by stopping Xt at the hitting time σa of Xt

for a. σa is the same as the hitting time r0a of X0
t for a.

Let U be the space of all right continuous functions with left limits. We will
define a point process X: T ≡ [0, ∞) → U by

DXxð¼ the domain of XxÞ
¼ the set of all discontinuity points of A�1ðtÞ

and

Xx;tðsÞ ¼ XðsþA�1ðt�ÞÞ if s�A�1ðtþÞ � A�1ðt�Þ
¼ a if s�A�1ðtþÞ � A�1ðt�Þ

for t 2 DXx (see the pictures in Sect. 2.2). We can use the strong Markov property
of Xt to prove that Xω is a Poisson point process: T → U.

Let us introduce a function e : U → S by

e uð Þ ¼ u 0ð Þ:
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Then, e � X is also a Poisson point process, and its characteristic measure is
denoted by k and is called the jumping-in measure of Xt. Then, the characteristic
measure nX of X proves to be

nXðVÞ ¼
Z
S
kðdbÞPbðX0

� 2 VÞ; V � U

when X0
� denotes the sample path of the stopped process X0

t .
Let h(u) = inf {t; u(t) = a}. Then, h � X is also a Poisson point process with

characteristic measure nX � h�1 and the jump part of A−1(t) is equal to

X
s2DX
s� t

ðh � XÞs:

Using (7), we have Z 1

0
ðt ^ 1ÞnX � h�1ðdtÞ\1

i.e.,

Z
S
kðdbÞEbðr0a ^ 1Þ\1:

Since the construction of a Poisson point process with a given characteristic
measure is easy, we can discuss the construction of the Markov process Xt from its
stopped process, its jumping-in measure, and its stagnancy rate (=the coefficient of
t in the continuous part of A−1(t)) if Xt has no continuous exit from a.

To discuss the case that a continuous exit from a is allowed, we will be faced
with a more difficult problem. Roughly speaking, if we can determine all possible
processes Xt with continuous exit only for their stopped process X0

t given (e.g.,
one-dimensional diffusion case), then we can determine all possible processes with
both continuous exit and discontinuous exit. However, we will not discuss this
problem in this note.
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