Contents

1 Introduction. Theory and Experiment of High-Order Harmonic Generation in Narrow and Extended Media 1

1.1 High-Order Harmonic Generation in Isotropic Medium: Three-Step Model and Macroscopic Consideration of Frequency Conversion .. 1

1.2 Overview of the Applications of Long Gaseous Media for the HHG ... 4

References .. 6

2 HHG in Short-Length Plasmas .. 9

2.1 Modern History and Perspectives of Harmonic Generation in Narrow Plasma Plumes .. 9

2.2 Spatial Coherence Measurements of Non-resonant and Resonant High-Order Harmonics Generated in Narrow Laser Ablation Plumes .. 14

2.3 Resonance Processes in the Plasma Plumes 21

2.3.1 Resonant and Non-resonant High-Order Harmonic Generation in the Plasmas Produced by Picosecond and Femtosecond Pulses .. 21

2.3.2 Resonance Enhancement of the 11th Harmonic of 1064 nm Picosecond Radiation Generated in Lead Plasma .. 28

2.4 Peculiarities of the High-Order Harmonics from Different Narrow Plasmas Generating at 1 kHz Repetition Rate 37

2.5 Concluding Comments .. 45

References .. 46

3 HHG in Extended Plasmas .. 51

3.1 Advanced Properties of Extended Plasmas for Efficient High-Order Harmonic Generation .. 51
3.2 Enhanced Harmonic Generation Using Different Second-Harmonic Sources for the Two-Color Pump of Extended Laser-Produced Plasmas 57
3.3 Modification of Modulated Plasma Plumes 67
3.4 Characterization of the High-Order Harmonics of 64 fs Pulses Generated in Extended Plasma Plumes 73
3.5 Concluding Comments .. 80
References .. 81

4 Quasi-Phase-Matching of Harmonics in Laser-Produced Plasmas ... 85
4.1 Perforated Target Ablation for the Formation of the Modulated Plasma for Quasi-Phase-Matched Harmonic Generation ... 87
4.2 Quasi-Phase-Matching of Harmonics Using the Variable Multi-jet Plasmas ... 92
4.3 QPM-Induced Enhancement of HHG During Two-Color Pump of Multi-jet Plasmas .. 98
4.4 Peculiarities of QPM Harmonics Using Different Targets and Pump Schemes ... 103
4.5 Influence of Plasma Jet Sizes and Pulse Energies on the Characteristics of QPM Harmonics 108
4.6 Concluding Comments .. 116
References .. 117

5 Peculiarities of the HHG in the Extended Plasmas Produced on the Surfaces of Different Materials 119
5.1 Harmonic Generation in the Plasmas Produced on the 5-mm-Long Crystal Surfaces .. 121
5.2 Application of the Laser Plasmas Produced on the Extended Surfaces of Elemental Semiconductors 127
5.3 Application of Carbon Cluster-Contained Extended Plasmas for the High-Order Harmonic Generation of Ultrashort Pulses .. 133
5.4 Morphology of Laser-Produced Carbon Nanoparticle Plasmas and High-Order Harmonic Generation of Ultrashort Pulses in Extended Clustered Media 139
5.5 Graphene-Contained Extended Plasma: A Medium for the Coherent Extreme Ultraviolet Light Generation 150
5.6 Concluding Comments .. 153
References .. 155

6 New Opportunities of Extended Plasma Induced Harmonic Generation ... 161
6.1 Third and Fourth Harmonics Generation in Laser-Induced Periodic Plasmas ... 162
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>Resonance-Enhanced Harmonics Generated in Nanoparticle and Monomer Plasmas</td>
<td>170</td>
</tr>
<tr>
<td>6.3</td>
<td>Electron Density Measurements in Laser-Produced Plasma Using the Nonlinear Optical Method</td>
<td>178</td>
</tr>
<tr>
<td>6.4</td>
<td>Concluding Comments</td>
<td>185</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>187</td>
</tr>
<tr>
<td>7</td>
<td>Harmonic Characterization Using Different HHG Schemes in the Extended Plasmas</td>
<td>189</td>
</tr>
<tr>
<td>7.1</td>
<td>Low- and High-Order Harmonic Generation in the Extended Plasmas Produced by Laser Ablation of Zinc and Manganese Targets</td>
<td>190</td>
</tr>
<tr>
<td>7.2</td>
<td>Application of Double Femtosecond Pulses for Plasma Harmonic Generation</td>
<td>200</td>
</tr>
<tr>
<td>7.3</td>
<td>Concluding Comments</td>
<td>207</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>207</td>
</tr>
<tr>
<td>8</td>
<td>Summary: Achievements and Perspectives</td>
<td>209</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>216</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>219</td>
</tr>
</tbody>
</table>
Frequency Conversion of Ultrashort Pulses in Extended Laser-Produced Plasmas
Ganeev, R.A.
2016, XIII, 221 p. 101 illus., 6 illus. in color., Hardcover