Contents

1 The Stable Population Model

1.1 Basic Model Ingredients

1.1.1 Introduction 1
1.1.2 Mortality 3
1.1.3 Fertility 8
1.1.4 Malthusian Populations 10

1.2 Fundamental Theorem of Demography 13

1.2.1 The Stable Population Model 13
1.2.2 Classical Solutions 17
1.2.3 Semigroup Solutions 20
1.2.4 Generation Expansion and R_0 24
1.2.5 Fundamental Theorem of Demography 28
1.2.6 The Intrinsic Rate of Natural Increase 35

1.3 The Dual System and the Reproductive Value 39

1.3.1 The Population Operator 39
1.3.2 The Reproductive Value 41
1.3.3 Fundamental Solutions 44
1.3.4 Backward System and Demographic Potential 45
1.3.5 Stochastic Interpretations 46

1.4 Some Demographic Applications 50

1.4.1 Demographic Indices 50
1.4.2 The Population Momentum 54
1.4.3 Preston–Coale System 59
1.4.4 Perturbation Theory 61

1.5 Age Profile Dynamics of Quasi-stable Populations 65

References ... 69
2 Extensions of the Linear Theory

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Multistate Stable Population Model</td>
<td>75</td>
</tr>
<tr>
<td>2.2</td>
<td>Inhomogeneous Linear Problems</td>
<td>84</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Stable Population Model with Immigration</td>
<td>84</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Population Dynamics of Marine Invertebrates</td>
<td>87</td>
</tr>
<tr>
<td>2.3</td>
<td>Linear Marriage Models</td>
<td>92</td>
</tr>
<tr>
<td>2.3.1</td>
<td>First-Marriage Model</td>
<td>92</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Reproduction by Non-persistent Unions</td>
<td>98</td>
</tr>
<tr>
<td>2.4</td>
<td>Parity Progression Model</td>
<td>102</td>
</tr>
<tr>
<td>2.5</td>
<td>Growth and Diffusion in Continuous State Spaces</td>
<td>108</td>
</tr>
<tr>
<td>2.5.1</td>
<td>McKendrick Equation with an Additional Structure</td>
<td>108</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Traveling Wave Solutions</td>
<td>116</td>
</tr>
<tr>
<td>2.6</td>
<td>Ergodicity Theorems for Non-autonomous Systems</td>
<td>117</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Primary System and Ergodicity</td>
<td>118</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Dual System and Ergodicity</td>
<td>125</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Generalized Stable Populations</td>
<td>127</td>
</tr>
<tr>
<td>2.6.4</td>
<td>Periodic Stable Populations</td>
<td>129</td>
</tr>
</tbody>
</table>

References | 133 |

3 Nonlinear One-Sex Models

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Period Control Model</td>
<td>139</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Basic Model and Its Well-Posedness</td>
<td>139</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Stationary Solutions and Their Stability</td>
<td>145</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Exchange of Stability</td>
<td>151</td>
</tr>
<tr>
<td>3.2</td>
<td>Global Behavior: Illustrative Examples</td>
<td>154</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Existence of Periodic Solutions</td>
<td>155</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Separable Models</td>
<td>159</td>
</tr>
<tr>
<td>3.3</td>
<td>Cohort Control Model</td>
<td>166</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Basic Model</td>
<td>166</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Easterlin Cycle</td>
<td>169</td>
</tr>
</tbody>
</table>

References | 177 |

4 Pair Formation Models

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>The Two-Sex Problem in Demography</td>
<td>181</td>
</tr>
<tr>
<td>4.2</td>
<td>Kendall’s Marriage Model</td>
<td>185</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Basic Model and Its Preliminary Analysis</td>
<td>185</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Exponential Solutions</td>
<td>188</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Stability of the Homogeneous System</td>
<td>191</td>
</tr>
<tr>
<td>4.3</td>
<td>Pair Formation Models with Age Structure</td>
<td>197</td>
</tr>
<tr>
<td>4.4</td>
<td>Malthusian Growth via Pair Formation</td>
<td>200</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Intra-cohort Marriage Models</td>
<td>201</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Inter-cohort Marriage Models</td>
<td>205</td>
</tr>
<tr>
<td>4.5</td>
<td>Semigroup Approach</td>
<td>206</td>
</tr>
</tbody>
</table>

References | 217 |
5 Basic Ideas in Epidemic Modeling 219
 5.1 The Early Kermack–McKendrick Model 219
 5.1.1 Basic Model .. 220
 5.1.2 Threshold Theorem and the Final Size Equation 224
 5.2 Three Applications 230
 5.2.1 Transmission by Environmental Contamination 230
 5.2.2 Virus Dynamics 233
 5.2.3 Asymptomatic Transmission Model 235
 5.3 Infection-Age-Dependent Model 238
 5.3.1 Linear Invasion Phase and R_0 239
 5.3.2 Asymptotic Behavior 241
 5.3.3 The Intensity of Epidemic and Its Lower Bound 242
 5.4 Pandemic Threshold Theorem 247
 5.4.1 Basic Model and R_0 248
 5.4.2 The Initial Value Problem 249
 5.4.3 The Final Size Equation of the Limiting Epidemic ... 252
 5.4.4 Traveling Wave Solutions 254
 5.5 Endemic Threshold Phenomena 255
 5.5.1 SIS Model Without Demography 256
 5.5.2 SIR Model with Demography 260
 5.5.3 Vaccination and Reinfection Model 266
 5.6 Vector-Transmitted Diseases 273
 5.6.1 Basic Model and Invasion Threshold 273
 5.6.2 Backward Bifurcation of Endemic Steady States 277

References .. 282

6 Age-Structured SIR Epidemic Model 287
 6.1 SIR Epidemic Model with Age Structure 287
 6.1.1 Basic Model ... 287
 6.1.2 Abstract Approach to the Well-Posedness 291
 6.2 Epidemic in a Demographic Steady State 295
 6.2.1 Horizontal Transmission and its R_0 295
 6.2.2 Local Stability of Endemic Steady State 299
 6.3 Epidemic in a Stable Population 303
 6.3.1 Threshold Condition for Invasion and Endemicity 303
 6.3.2 Local Stability of Steady States 305
 6.4 Threshold Principle and R_0 308
 6.4.1 Horizontal Transmission 309
 6.4.2 Vertical Transmission 314
 6.4.3 Threshold Number in the Normalized System 318
 6.4.4 Endemic Threshold Condition 320
6.5 Infection-Age Dependency 322
 6.5.1 The Basic Reproduction Number 323
 6.5.2 Integral Equation Approach 324
References ... 328

7 Epidemic Models for HIV Infection 333
 7.1 Modeling the Invasion Phase 333
 7.1.1 Malthus Model and Prevalence 334
 7.1.2 Risk-Based Model 341
 7.1.3 Pair Formation Model 344
 7.2 Age-Structured Model for HIV Infection in a Homosexual
 Community .. 351
 7.2.1 Basic Model 351
 7.2.2 Criterion for HIV Invasion 354
 7.2.3 Bifurcation of Endemic Equilibria 356
 7.3 Age-Structured Model of In Vivo HIV Infection 362
 7.3.1 Basic Model and Parameters 362
 7.3.2 The Basic Reproduction Number R_0 368
 7.3.3 Extinction and Persistence of Infected T Cells 370
References ... 375

8 Variable Susceptibility, Reinfection, and Immunity 379
 8.1 Pease Model for Type A Influenza Epidemics 380
 8.1.1 Basic Model 380
 8.1.2 Threshold Condition and Persistence 383
 8.1.3 Stability of the Endemic Steady State 388
 8.1.4 Effects of Vaccination 391
 8.2 Kermack–McKendrick Reinfection Model 395
 8.2.1 Basic Model 396
 8.2.2 Integral Equations 398
 8.2.3 Bifurcation of Endemic Steady States 400
 8.2.4 Vaccination 403
 8.2.5 One Clock or Two Clocks? 408
 8.3 Reproductivity Enhancement: Examples 412
 8.3.1 Malaria 412
 8.3.2 Measles in a Vaccinated Population 415
 8.3.3 Tuberculosis 417
 8.4 Chronological-Age-Dependent Reinfection Model 419
 8.4.1 Basic Model 419
 8.4.2 Invasion Problem and R_0 421
 8.4.3 Endemic Steady States 423
 8.4.4 Prevalence and Total Infection Rate 425
 8.4.5 Vaccination 427
Age-Structured Population Dynamics in Demography and Epidemiology
Inaba, H.
2017, XIX, 555 p. 15 illus., Hardcover
ISBN: 978-981-10-0187-1