Contents

1 Overview of the Chinese National Key Basic Research Project Entitled “Development and Evaluation of High-Resolution Climate System Models” 1

1.1 Introduction .. 1

1.1.1 Demand for the Sustainable Development of Economies and Society 2

1.1.2 Scientific Basis for Climate Change Research 3

1.1.3 Expected Contributions to Solving Problems at the National Level .. 4

1.2 Objectives .. 4

1.2.1 General Goals ... 4

1.2.2 Objectives of the 5-Year Project ... 4

1.3 Subprojects .. 5

1.4 Overview of the Project Implementation 7

1.5 Major Achievements .. 8

1.5.1 Development of a High-Resolution Version of the BCC_CSM Global Climate System Model 8

1.5.2 The Model Evaluation System .. 17

1.5.3 The MME Coupling Platform .. 35

1.6 Concluding Remarks .. 43

References ... 45

2 Studies on High-Resolution Atmospheric and Oceanic General Circulation Models .. 49

2.1 Introduction .. 49

2.2 Objectives ... 50

2.3 Major Achievements .. 50

2.3.1 Improvements of the Dynamical Core of the High-Resolution AGCM 50

2.3.2 Sensitivity of Simulated Climate to Dynamical Cores. ... 53
2.3.3 Preliminary Results from the High-Resolution IAP AGCM4.0 .. 59
2.3.4 CAR Validation and Its Application to Further Improve the Performances of the Original Radiation Transfer Codes .. 66
2.3.5 The Spread Related to Cloud and Radiation Calculations .. 72
2.3.6 Dominant Roles of Subgrid-Scale Cloud Structures in Model Differences of Cloud Radiative Effects 73
2.3.7 Incorporation of the CAR System into the Physical Framework of IAP AGCM4 79
2.3.8 A High-Resolution Global Ocean General Circulation Model Based on the Hybrid Coordinate Ocean Model 80
2.3.9 Other Achievements Related to IAP Model Performance .. 89
2.4 Summary .. 99
References .. 100

3 Studies on the Model Dynamics and Physical Parameterizations of the High-Resolution Version of the Global Climate System
Model BCC_CSM .. 105
3.1 Introduction .. 106
3.2 Objectives .. 107
3.3 Major Achievements 107
3.3.1 Advection Schemes 107
3.3.2 The Parameterization of Gravity Wave Drag 117
3.3.3 Further Development of the Cumulus Convection Parameterization Scheme 119
3.3.4 Cloud and Its Interaction with Atmospheric Radiation 121
3.3.5 Improvements in the Parameterization of Surface Turbulent Fluxes Between Air and Sea/Sea Ice 131
3.3.6 Parameterizations of Land Surface Processes 135
3.3.7 Vertical Mixing Processes in the Ocean 142
3.4 Performance .. 144
3.4.1 The Stability of BCC_CSM 144
3.4.2 Global Distribution of Precipitation 146
3.4.3 Regional Climate Over East Asia 149
3.4.4 SST Over the Tropical Pacific Ocean 155
3.5 Summary .. 157
References .. 157

4 Development and Testing of a Multi-model Ensemble Coupling Framework .. 163
4.1 Introduction .. 163
4.2 Objectives .. 165
4.3 Major Achievements .. 166
 4.3.1 Multi-model Ensemble Coupling Framework 166
 4.3.2 Validation of the Multi-model Ensemble Coupling Framework ... 180
 4.3.3 Climate Impact of the Atmospheric Noise Investigated by the IE Model 191
 4.3.4 Impacts of Atmospheric Noise on the Relationship Between ENSO and North Pacific SST Investigated by the IE Model ... 196
 4.3.5 The Role of Atmospheric Noise in the NAO with the IE Model ... 199
4.4 Summary .. 204
References ... 206

5 Metrics for Gauging Model Performance Over the East Asian–Western Pacific Domain ... 209
 5.1 Introduction .. 209
 5.2 Objectives .. 210
 5.3 Major Achievements ... 211
 5.3.1 Metrics for East Asian Summer Monsoon Simulation 211
 5.3.2 Metrics for East Asian Cloud and Radiation Simulation .. 221
 5.3.3 Tropical Cloud Simulation 228
 5.3.4 Processes for Improving Model Performance in ENSO Simulation ... 231
 5.3.5 The Double ITCZ Bias in the Coupled Model 235
 5.3.6 ENSO–Monsoon Relationship Simulated by FGOALS-s2 ... 238
 5.3.7 Decadal Prediction System of FGOALS-gl and FGOALS-s2 ... 245
 5.3.8 Other Achievements ... 249
 5.4 Summary .. 251
References ... 253

Index .. 257
Development and Evaluation of High Resolution Climate System Models
2016, IX, 258 p. 149 illus., 38 illus. in color., Hardcover
ISBN: 978-981-10-0031-7