Contents

Preface v

1. Sequential Advanced Guide Signing For Work Zone Related Rerouting On Highways 1
 K. Brijs, E. Jongen, G. Wets, and T. Brijs
 1.1 Background 1
 1.2 Problem Statement 4
 1.3 Objectives 5
 1.4 Research Questions 5
 1.5 Methodology 6
 1.6 Results 9
 1.7 Discussion 14
 1.8 Conclusion and Recommendations 16

2. The Relationship between Driver Fatigue and Monotonous Road Environment 19
 X. Zhao and J. Rong
 2.1 Introduction 19
 2.2 Literature Review 20
 2.3 The Road Environment Monotony Evaluation 24
 2.4 Methodology 28
 2.5 Data Analysis and Results 32
2.6 Conclusions .. 36

3. Driving Situation Awareness in Transport Operations 37
 C. Ding, Y. Mao, W. Wang, and M. Baumann

 3.1 Introduction .. 37
 3.2 Models of Situation Awareness 39
 3.3 Importance of Situation Awareness 44
 3.4 Measurements of Situation Awareness during Driving ... 46
 3.5 Driver Distraction on Situation Awareness 50
 3.6 Applications of Situation Awareness 54
 3.7 Conclusions .. 55

4. Container Drayage Operations at Intermodal Terminals 57
 A. Caris and G.K. Janssens

 4.1 Introduction .. 57
 4.2 Deterministic Annealing Algorithm 59
 4.3 Numerical Experiments 61
 4.4 Conclusions and Future Research 70

5. Application of Genetic Algorithm to Optimize Transit Schedule
 under Time-Dependent Demand 71
 H. Niu

 5.1 Introduction .. 71
 5.2 Problem Statement .. 73
 5.3 Model ... 76
 5.4 Genetic Algorithm ... 80
 5.5 Numerical Example ... 83
 5.6 Conclusions .. 85

6. Validation of an Activity-Based Traffic Demand Model for Flanders 89
 B. Kochan, T. Bellemans, D. Janssens, and G. Wets

 6.1 Introduction .. 89
 6.2 FEATHERSs .. 90
6.3 Albatross .. 91
6.4 Incorporating the ALBATROSS Model inside FEATHERS 91
6.5 Travel Demand and Traffic Assignment Model Chain 95
6.6 Validation of Flemish Simulation Results 97
6.7 Conclusions and Discussion104

7. **Driver Behaviour in Conflict with Redcrossing Pedestrians** 107

 X. Jiang, W. Wang, and K. Bengler

 7.1 Introduction .. 107
 7.2 Vehicle-Pedestrian Conflict and Driver Behaviour 108
 7.3 Methodologies 112
 7.4 Data Analysis 120
 7.5 Driver Yielding Behaviour Based on Logit Model 125
 7.6 Conclusions .. 126

8. **Cellular Automaton Model and Simulation of Traffic and Mobility Operations** 129

 H. Xiong, X. Guo, and W. Wang

 8.1 Introduction .. 129
 8.2 Traffic CA model 131
 8.3 Pedestrian CA model 139
 8.4 Paired pedestrian CA model and simulation 146
 8.5 Conclusion .. 157

9. **A Data Imputation Method with Support Vector Machines** 159

 B. Yang, D. Janssens, D. Ruan, T. Bellemans, and G. Wets

 9.1 Introduction .. 159
 9.2 Data Description 161
 9.3 Data Imputation Method with SVM 162
 9.4 Data Imputation Method with PNN and LDA 166
 9.5 Results and Discussions 168
 9.6 Conclusions .. 170
10. **VLSN Search Method Based Hubs Location and Service Frequency Determination**

 W. Xu and S. He

 10.1 Introduction ... 173
 10.2 Problem Description .. 177
 10.3 CMST for Hub Locations in Rail and Truck Freight Transportation Network 180
 10.4 VLSN for the Hub Location Problem 182
 10.5 Service Frequency Determination for the Hub-Spoke Network 186
 10.6 Case Studies .. 188
 10.7 Conclusions .. 193

11. **Quantitative Risk Assessment for Traffic and Mobility Safety**

 W. Guo, W. Wang, H. Bubb, S. Xia, and F. Li

 11.1 Introduction .. 197
 11.2 Basic Concepts, Definitions of Event, Incident and Accident 199
 11.3 Fundamentals of Incident Tree Model and Incident Tree Analysis Method 202
 11.4 Incident Tree Model ... 209
 11.5 Incident Tree Analysis ... 216
 11.6 Concluding Remarks .. 221

12. **Investigating the Progress towards Sustainable Road Transport in Europe**

 Y. Shen, E. Hermans, T. Brijs, G. Wets, and K. Vanhoof

 12.1 Introduction ... 223
 12.2 Efficiency Measurement based on a DEA Model with Undesirable Factors 227
 12.3 DEA-based Malmquist Index for Productivity Change Assessment 230
 12.4 Application and Results on Sustainable Road Transport Evaluation 234
 12.5 Conclusions .. 240

H. Guo, W. Wang, and H. Bubb

13.1 Introduction 243
13.2 Basic Concept and Theory 245
13.3 Reliability Analysis of Pedestrian Crossing Behavior at Signalized Crosswalk 256
13.4 Conclusion 265

14. Applications of Multi-Source Traffic Data on Mobility Analysis for Urban Road Network

J. Weng, J. Rong, L. Liu, and Y. Zhai

14.1 Introduction 267
14.2 Available Data Sources 268
14.3 Travel Speed Computation and Forecasting 272
14.4 Multi-Source Data Based Traffic Incident Detection 288
14.5 Conclusions and Future Works 295

15. Practical Methods in Traffic Demand Forecasting Model

L. Yao and L. Sun

15.1 Introduction 297
15.2 The Application of Disaggregate Model in Traffic Demand Forecasting . 298
15.3 The Application of Entropy Model in Traffic Demand Forecasting ... 311
15.4 Conclusions 319

Bibliography 321
Computational Intelligence for Traffic and Mobility
Wang, W.; Wets, G. (Eds.)
2013, XII, 340 p., Hardcover
ISBN: 978-94-91216-79-4
A product of Atlantis Press