Contents

Acknowledgements 9

1. Introduction 11
 1.1 The Advantages of a Logical Approach 12
 1.2 Main High-Level Conclusions 13
 1.3 Summary 14
 1.3.1 Part I: Representations and Rules for Real-World Reasoning 14
 1.3.2 Part II: Acquiring, Storing and Mining Logical Knowledge 19
 1.3.3 Part III: Real World Reasoning Using Probabilistic Logic Networks 22

Part I: Representations and Rules for Real-World Reasoning 25

2. Knowledge Representation Using Formal Logic 27
 2.1 Basic Concepts of Term and Predicate Logic 28
 2.2 Review of Propositional Logic 29
 2.2.1 Deduction in Propositional Logic 31
 2.3 Review of Predicate Logic 32
 2.3.1 Deduction in First-Order Logic 34
 2.3.2 First-order Theories 36
 2.3.3 Forward and Backward Chaining 37
 2.3.4 Decidability and Decision Procedures 39
 2.4 Simple Examples of Formal Logical Inference 40
 2.4.1 Example of Kings and Queens 40
 2.4.2 Example of Minesweeper 41
 2.4.3 Example of Socrates 43
 2.5 Modal logic 44
 2.6 Deontic logic 46
 2.6.1 Fuzzy deontic logic 47
 2.7 The frame problem 48
 2.7.1 Review of the Frame Problem 49
 2.7.2 Working around the Frame Problem 50

3. Quantifying and Managing Uncertainty 53
 3.1 Fuzzy logic 53
 3.2 Possibility theory 54
 3.3 Inference using Traditional Probabilities 55
 3.3.1 Bayesian Inference 55
Real-World Reasoning

3.3.2 Bayesian Networks ... 55
3.3.3 Bayesian Causal Networks 59
3.3.4 Bayesian Inference .. 59
3.3.5 Markov Logic Networks ... 61
3.4 Imprecise and indefinite probability 64

4. Representing Temporal Knowledge

4.1 Approaches to Quantifying Time 66
4.2 Allen’s Interval Algebra .. 68
4.2.1 Allen Algebra in the Twitter Domain 71
4.3 Uncertain Interval Algebra ... 75

5. Temporal Reasoning

5.1 The Challenge Time Presents to Classical Logic 80
5.1.1 First order logic: temporal arguments approach 81
5.1.2 Reified temporal logic ... 82
5.1.3 Modal temporal logic .. 84
5.1.4 Integration of deontic and temporal logic 87
5.2 Inference systems for temporal logic 89
5.2.1 Inference in the Simple First Order Logic Approach 90
5.2.2 Reified temporal logic ... 91
5.2.3 Modal temporal logic .. 92
5.2.4 Computational Tree Logic 93
5.2.5 Branching Temporal Logic 95
5.3 Examples of Temporal Inference in the Twitter Domain 95

6. Representing and Reasoning On Spatial Knowledge

6.1 An Example Scenario for Spatial Representation and Reasoning 100
6.2 Topological Representation .. 100
6.3 Directional Reasoning .. 108
6.4 Occupancy Grids: Putting It All Together 112
6.5 Handling Change ... 118
6.6 Spatial Logic .. 119
6.6.1 Extending RCC into a Topological Logic 121
6.6.2 Combining Spatial and Temporal Logic 122

7. Representing and Reasoning on Contextual Knowledge

7.1 Logic-Based Context Models ... 125
7.1.1 The Divide-and-conquer approach 125
7.1.2 Compose-and-conquer Approaches 126
7.1.3 Compatibility constraints 127
7.2 Other Approaches to Contextual Knowledge Representation 128
7.3 Contextual Knowledge in Probabilistic Logic Networks 129
7.4 User Models as Contexts ... 131
7.4.1 User Modeling in Information Retrieval Systems 131
7.4.2 User modeling from the cognitive perspective 133
7.4.3 Logic-based user modeling 134
7.4.4 Contextual Logic for User Modeling 134
7.5 General Considerations Regarding Contextual Inference 138
7.5.1 Uncertain Contextual Inference 140
7.6 A Detailed Example Requiring Contextual Inference 140

8. Causal Reasoning .. 147
8.1 Correlation does not imply causation 148
8.2 Other Challenges in Causal Reasoning 149
8.3 Mill’s Methods ... 150
8.4 Hill’s Criteria .. 153
8.5 Graphical models ... 154
8.6 Potential-outcomes (counterfactual) models 154
8.7 Structural-equation models .. 156
8.8 Probabilistic causation ... 157

Part II: Acquiring, Storing and Mining Logical Knowledge 159
9. Extracting Logical Knowledge from Raw Data 161
9.1 Extracting Logical Knowledge from Tabular and Relational Data 163
9.2 Extracting Logical Knowledge from Graphs, Drawings, Maps and Tables 163
9.3 Extracting Logical Knowledge from Natural Language Text 165

10. Scalable Spatiotemporal Logical Knowledge Storage 169
10.1 Comparison of Available Storage Technologies 169
10.2 Transforming Logical Relationship-Sets into Graphs 173

11. Mining Patterns from Large Spatiotemporal Logical Knowledge Stores 179
11.1 Mining Frequent Subgraphs of Very Large Graphs 180
11.2 Learning Partial Causal Networks 182
11.3 Scalable Techniques for Causal Network Discovery 184

Part III: Probabilistic Logic Networks for Real-World Reasoning 187
12. Probabilistic Logic Networks .. 189
12.1 Motivations Underlying PLN .. 189
12.2 Term and Predicate Logic in PLN 191
12.3 Knowledge Representation in PLN 193
12.4 PLN Truth Values and Formulas 195
12.5 Some Relevant PLN Relationship Types and Inference Rules 197
12.5.1 SatisfyingSet and Member 198
12.5.2 Equivalence and Implication 199
12.5.3 Quantifiers, Average and ThereExists 200
12.5.4 Some Inheritance rules ... 201
12.5.5 Intensional Inheritance ... 201
12.6 Applying PLN ... 202
12.7 Deploying PLN in the OpenCog System 203
13. Temporal and Contextual Reasoning in PLN

13.1 Temporal relationship types ... 205
13.2 PLN Temporal Inference in Action .. 207
13.3 PLN Causal Relationship Types .. 211
13.4 PLN Contextual Inference in Action .. 212

14. Inferring the Causes of Observed Changes

14.1 The Case of Bob and His New Friends, with Temporal Inference Only 223
14.1.1 Axioms ... 223
14.1.2 Inference Trails .. 227
14.2 Incorporating Spatial Inference into Analysis of Change 233
14.2.1 New Axioms .. 234
14.2.2 Evaluating the Theorems .. 241

15. Adaptive Inference Control

15.1 Specific Examples Requiring Adaptive Inference Control 248
15.1.1 Using Commonsense Knowledge about Space in Inference Control 251
15.1.2 Using Commonsense Knowledge about Time in Inference Control 254
15.2 General Issues Raised by the Above Examples 256
15.2.1 Inference Control and Cognitive Architectures 257
15.3 Inference Control in the OpenCog Cognitive Architecture 257
15.3.1 Activation Spreading and Inference Control in OpenCog 257
15.3.2 Working around the Frame Problem via Integrative AGI 259

16. Conclusion

References

References
Real-World Reasoning: Toward Scalable, Uncertain
Spatiotemporal, Contextual and Causal Inference
Goertzel, B.; Geisweiller, N.; Coelho, L.; Janičić, P.;
Pennachin, C.
2011, IX, 269 p. 59 illus., 1 illus. in color., Hardcover
ISBN: 978-94-91216-10-7
A product of Atlantis Press