Contents

1 Calculus of Variations on Fibre Bundles 1
 1.1 Infinite Order Jet Formalism 1
 1.2 Variational Bicomplex .. 7
 1.2.1 Cohomology of the Variational Bicomplex 9
 1.3 Lagrangian Formalism ... 12

2 Noether’s First Theorem .. 17
 2.1 Lagrangian Symmetries ... 17
 2.2 Gauge Symmetries: Noether’s Direct Second Theorem 20
 2.3 Noether’s First Theorem: Conservation Laws 23

3 Lagrangian and Hamiltonian Field Theories 27
 3.1 First Order Lagrangian Formalism 27
 3.2 Cartan and Hamilton–De Donder Equations 30
 3.3 Noether’s First Theorem: Energy-Momentum Currents 32
 3.4 Conservation Laws in the Presence of a Background Field 34
 3.5 Covariant Hamiltonian Formalism 36
 3.6 Associated Lagrangian and Hamiltonian Systems 41
 3.7 Noether’s First Theorem: Hamiltonian Conservation Laws 47
 3.8 Quadratic Lagrangian and Hamiltonian Systems 49

4 Lagrangian and Hamiltonian Nonrelativistic Mechanics 59
 4.1 Geometry of Fibre Bundles over \mathbb{R} 60
 4.2 Lagrangian Mechanics. Integrals of Motion 63
 4.3 Noether’s First Theorem: Energy Conservation Laws 67
 4.4 Gauge Symmetries: Noether’s Second and Third Theorems 71
 4.5 Non-autonomous Hamiltonian Mechanics 73
 4.6 Hamiltonian Conservation Laws: Noether’s Inverse First
 Theorem .. 80
 4.7 Completely Integrable Hamiltonian Systems 84
5 Global Kepler Problem ... 93

6 Calculus of Variations on Graded Bundles 103
 6.1 Grassmann-Graded Algebraic Calculus 103
 6.2 Grassmann-Graded Differential Calculus 106
 6.3 Differential Calculus on Graded Bundles 109
 6.4 Grassmann-Graded Variational Bicomplex 121
 6.5 Grassmann-Graded Lagrangian Theory 127
 6.6 Noether’s First Theorem: Supersymmetries 129

7 Noether’s Second Theorems .. 135
 7.1 Noether Identities: Reducible Degenerate
 Lagrangian Systems .. 136
 7.2 Noether’s Inverse Second Theorem 145
 7.3 Gauge Supersymmetries: Noether’s Direct Second Theorem ... 148
 7.4 Noether’s Third Theorem: Superpotential 152
 7.5 Lagrangian BRST Theory 155

8 Yang–Mills Gauge Theory on Principal Bundles 163
 8.1 Geometry of Principal Bundles 163
 8.2 Principal Gauge Symmetries 171
 8.3 Noether’s Direct Second Theorem: Yang–Mills Lagrangian ... 173
 8.4 Noether’s First Theorem: Conservation Laws 175
 8.5 Hamiltonian Gauge Theory 177
 8.6 Noether’s Inverse Second Theorem: BRST Extension 179

9 SUSY Gauge Theory on Principal Graded Bundles 183

10 Gauge Gravitation Theory on Natural Bundles 189
 10.1 Relativity Principle: Natural Bundles 189
 10.2 Equivalence Principle: Lorentz Reduced Structure 191
 10.3 Metric-Affine Gauge Gravitation Theory 194
 10.4 Energy-Momentum Gauge Conservation Law 197
 10.5 BRST Gravitation Theory 199

11 Chern–Simons Topological Field Theory 201

12 Topological BF Theory ... 207

Glossary .. 211

Appendix A: Differential Calculus over Commutative Rings 213

Appendix B: Differential Calculus on Fibre Bundles 227
Noether's Theorems
Applications in Mechanics and Field Theory
Sardanashvily, G.
2016, XVII, 297 p., Hardcover
A product of Atlantis Press