Contents

Semiclassical Correlation Functions ... 1
1 Coherent States ... 5
2 Husimi Distribution .. 7
3 Semiclassical Limit Using Wigner Functions 11
4 Gabor Transform .. 14
5 Semiclassical Limit of Joint Distribution Function 15
6 Semiclassical Limit Using Coherent States 17
7 Convergence of Quantum Solutions to Classical Solutions 20
References .. 25

Lecture 2: Pseudo-differential Operators. Berezin, Kohn–Nirenberg,
Born–Jordan Quantizations .. 27
1 Weyl Symbols .. 28
2 Pseudo-differential Operators .. 29
3 Calderon–Vaillantcourt Theorem ... 32
4 Classes of Pseudo-differential Operators. Regularity Properties 36
5 Product of Operator Versus Products of Symbols 39
6 Correspondence Between Commutators and Poisson Brackets; Time Evolution ... 41
7 Berezin Quantization .. 44
8 Toeplitz Operators ... 46
9 Kohn–Nirenberg Quantization .. 47
10 Shubin Quantization .. 48
11 Born–Jordarn Quantization .. 49
References .. 50

Lecture 3: Compact and Schatten Class Operators. Compactness
Criteria. Bouquet of Inequalities .. 51
1 Schatten Classes .. 55
2 General Traces ... 57
3 General L^p Spaces ... 58
Lecture 4: Periodic Potentials, Wigner–Seitz Cell and Brillouin Zone. Bloch and Wannier Functions

1 Fermi Surface, Fermi Energy ... 84
 The Theory of Bloch-Floquet-Zak .. 87
3 Decompositions ... 88
4 One Particle in a Periodic Potential 91
5 The Mathieu Equation .. 95
6 The Case $d \geq 2$. Fibration in Momentum Space 96
7 Direct Integral Decomposition .. 98
8 Wannier Functions ... 103
9 Chern Class ... 106
References .. 108

Lecture 5: Connection with the Properties of a Crystal.
Born–Oppenheimer Approximation. Edge States and Role of Topology .. 111
1 Crystal in a Magnetic Field ... 113
2 Slowly Varying Electric Field .. 114
3 Heisenberg Representation ... 118
4 Pseudo-differential Point of View .. 119
5 Topology Induced by a Magnetic Field 121
6 Algebraic-Geometric Formulation .. 123
7 Determination of a Topological Index 125
8 Gauge Transformation, Relative Index and Quantum Pumps 129
References .. 131

Lecture 6: Lie–Trotter Formula, Wiener Process, Feynman–Kac Formula ... 133
1 The Feynman Formula .. 138
2 Stationary Action; The Fujiwara’s Approach 140
3 Generalizations of Fresnel Integral ... 141
4 Relation with Stochastic Processes .. 142
5 Random Variables. Independence ... 144
6 Stochastic Processes, Markov Processes 145
7 Construction of Markov Processes ... 146
Contents

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lecture 7: Elements of Probability Theory. Construction of Brownian Motion. Diffusions</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Measurability</td>
<td>148</td>
</tr>
<tr>
<td>9</td>
<td>Wiener Measure</td>
<td>151</td>
</tr>
<tr>
<td>10</td>
<td>The Feynman–Kac Formula I: Bounded Continuous Potentials</td>
<td>152</td>
</tr>
<tr>
<td>11</td>
<td>The Feynman–Kac Formula II: More General Potentials</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>Lecture 8: Ornstein–Uhlenbeck Process. Markov Structure.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semigroup Property. Paths Over Function Spaces</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Inequalities</td>
<td>158</td>
</tr>
<tr>
<td>2</td>
<td>Independent Random Variables</td>
<td>160</td>
</tr>
<tr>
<td>3</td>
<td>Criteria of Convergence</td>
<td>161</td>
</tr>
<tr>
<td>4</td>
<td>Laws of Large Numbers; Kolmogorov Theorems</td>
<td>162</td>
</tr>
<tr>
<td>5</td>
<td>Central Limit Theorem</td>
<td>164</td>
</tr>
<tr>
<td>6</td>
<td>Construction of Probability Spaces</td>
<td>166</td>
</tr>
<tr>
<td>7</td>
<td>Construction of Brownian Motion (Wiener Measure)</td>
<td>167</td>
</tr>
<tr>
<td>8</td>
<td>Brownian Motion as Limit of Random Walks</td>
<td>169</td>
</tr>
<tr>
<td>9</td>
<td>Relative Compactness</td>
<td>170</td>
</tr>
<tr>
<td>10</td>
<td>Modification of Wiener Paths. Martingales</td>
<td>172</td>
</tr>
<tr>
<td>11</td>
<td>Ito Integral</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>Lecture 9: Modular Operator. Tomita–Takesaki Theory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-commutative Integration</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>The Trace. Regular Measure (Gage) Spaces</td>
<td>204</td>
</tr>
<tr>
<td>2</td>
<td>Brief Review of the K-M-S. Condition</td>
<td>206</td>
</tr>
<tr>
<td>3</td>
<td>The Tomita–Takesaki Theory</td>
<td>208</td>
</tr>
<tr>
<td>4</td>
<td>Modular Structure, Modular Operator, Modular Group</td>
<td>212</td>
</tr>
<tr>
<td>5</td>
<td>Intertwining Properties</td>
<td>215</td>
</tr>
<tr>
<td>Lecture</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>Positive Cones</td>
<td>315</td>
</tr>
<tr>
<td>2</td>
<td>Doubly Markov</td>
<td>317</td>
</tr>
<tr>
<td>3</td>
<td>Existence of the Ground State</td>
<td>319</td>
</tr>
<tr>
<td>4</td>
<td>Hypercontractivity</td>
<td>320</td>
</tr>
<tr>
<td>5</td>
<td>Uniqueness of the Ground State</td>
<td>324</td>
</tr>
<tr>
<td>6</td>
<td>Contractions</td>
<td>328</td>
</tr>
<tr>
<td>7</td>
<td>Positive Distributions</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>332</td>
</tr>
<tr>
<td>15</td>
<td>Lecture 15: Hypercontractivity. Logarithmic Sobolev Inequalities. Harmonic Group</td>
<td>333</td>
</tr>
<tr>
<td>1</td>
<td>Logarithmic Sobolev Inequalities</td>
<td>334</td>
</tr>
<tr>
<td>2</td>
<td>Relation with the Entropy</td>
<td>337</td>
</tr>
<tr>
<td>3</td>
<td>Estimates of Quadratic Forms</td>
<td>339</td>
</tr>
<tr>
<td>4</td>
<td>Spectral Properties</td>
<td>340</td>
</tr>
<tr>
<td>5</td>
<td>Logarithmic Sobolev Inequalities and Hypercontractivity</td>
<td>342</td>
</tr>
<tr>
<td>6</td>
<td>An Example: Gauss–Dirichlet Operator</td>
<td>344</td>
</tr>
<tr>
<td>7</td>
<td>Other Examples</td>
<td>346</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>350</td>
</tr>
<tr>
<td>16</td>
<td>Lecture 16: Measure (Gage) Spaces. Clifford Algebra, C.A.R. Relations. Fermi Field</td>
<td>351</td>
</tr>
<tr>
<td>1</td>
<td>Gage Spaces</td>
<td>351</td>
</tr>
<tr>
<td>2</td>
<td>Interpolation Theorem</td>
<td>354</td>
</tr>
<tr>
<td>3</td>
<td>Perturbation Theory for Gauge Spaces</td>
<td>355</td>
</tr>
<tr>
<td>4</td>
<td>Non-commutative Integration Theory for Fermions</td>
<td>356</td>
</tr>
<tr>
<td>5</td>
<td>Clifford Algebra</td>
<td>357</td>
</tr>
<tr>
<td>6</td>
<td>Free Fermi Field</td>
<td>359</td>
</tr>
<tr>
<td>7</td>
<td>Construction of a Non-commutative Integration</td>
<td>360</td>
</tr>
<tr>
<td>8</td>
<td>Dual System</td>
<td>361</td>
</tr>
<tr>
<td>9</td>
<td>Alternative Definition of Fermi Field</td>
<td>362</td>
</tr>
<tr>
<td>10</td>
<td>Integration on a Regular Gage Space</td>
<td>364</td>
</tr>
<tr>
<td>11</td>
<td>Construction of Fock Space</td>
<td>367</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>372</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>373</td>
</tr>
</tbody>
</table>
Lectures on the Mathematics of Quantum Mechanics II: Selected Topics
Dell'Antonio, G.
2016, XIX, 381 p., Hardcover
ISBN: 978-94-6239-114-7
A product of Atlantis Press