Contents

1 The Function Spaces 1
 1.1 Preliminaries ... 1
 1.2 Lebesgue Spaces with Variable Exponents 4
 1.2.1 Definition and Basic Properties 4
 1.2.2 Equivalent Norm and Completeness of $L^{p(\cdot)}(\Omega)$... 12
 1.2.3 Dense Sets in $L^{p(\cdot)}(\Omega)$ 16
 1.3 Sobolev Spaces with Variable Exponents 18
 1.4 Anisotropic Spaces of Functions Depending on x and t 22
 1.4.1 Approximation by Smooth Functions 23
 1.4.2 A Subspace of $W(Q)$ 27
 1.5 Formulas of Integration by Parts 29
 1.6 Embedding Theorems in Anisotropic Spaces 34
 1.7 Interpolation Inequalities 40

2 A Porous Medium Equation with Variable Nonlinearity 45
 2.1 Introduction ... 45
 2.2 Model Equation: Assumptions and Results 46
 2.3 Regularization ... 47
 2.4 A Priori Estimates 48
 2.5 Passage to the Limit 54
 2.6 Uniqueness of Weak Solutions 56
 2.7 Equations with Lower-Order Terms 60
 2.8 Equations with Anisotropic Nonlinearity 69
 2.9 Stationary Solutions 70
 2.10 Remarks ... 79

3 Localization of Solutions of the Generalized Porous Medium Equation 81
 3.1 Notation and Assumptions 82
 3.2 Finite Speed of Propagation 83
Anisotropic Equations with Variable Growth and Coercivity Conditions

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Anisotropic Equations with Variable Growth and Coercivity Conditions</td>
<td>107</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>107</td>
</tr>
<tr>
<td>4.2</td>
<td>Existence Theorems</td>
<td>110</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Galerkin’s Approximations</td>
<td>112</td>
</tr>
<tr>
<td>4.2.2</td>
<td>A Priory Estimates</td>
<td>112</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Compactness and Passage to the Limit</td>
<td>116</td>
</tr>
<tr>
<td>4.3</td>
<td>L^∞ estimates</td>
<td>122</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Global Estimates</td>
<td>122</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Global Existence via Boundedness</td>
<td>126</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Local Existence via Boundedness</td>
<td>129</td>
</tr>
<tr>
<td>4.4</td>
<td>Uniqueness Theorems</td>
<td>130</td>
</tr>
<tr>
<td>4.5</td>
<td>Global Regularity for a Class of Model Equations</td>
<td>136</td>
</tr>
<tr>
<td>4.6</td>
<td>Singular Perturbation of the $p(x,t)$-Laplace Operator</td>
<td>140</td>
</tr>
<tr>
<td>4.7</td>
<td>The Cauchy Problem</td>
<td>144</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Steklov’s Means</td>
<td>146</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Problems in Bounded Cylinders</td>
<td>150</td>
</tr>
<tr>
<td>4.7.3</td>
<td>Unbounded Domain</td>
<td>157</td>
</tr>
<tr>
<td>4.7.4</td>
<td>Boundedness and Uniqueness of Weak Solutions</td>
<td>159</td>
</tr>
<tr>
<td>4.8</td>
<td>Stationary Solutions</td>
<td>160</td>
</tr>
<tr>
<td>4.8.1</td>
<td>A Model Equation</td>
<td>162</td>
</tr>
<tr>
<td>4.8.2</td>
<td>The General Case</td>
<td>163</td>
</tr>
<tr>
<td>4.8.3</td>
<td>Bounded Weak Solutions</td>
<td>167</td>
</tr>
<tr>
<td>4.8.4</td>
<td>Systems of Elliptic Equations</td>
<td>169</td>
</tr>
<tr>
<td>4.9</td>
<td>Remarks</td>
<td>171</td>
</tr>
<tr>
<td>4.9.1</td>
<td>Renormalized and Entropy Solutions</td>
<td>176</td>
</tr>
<tr>
<td>4.9.2</td>
<td>Equation with Measurable Exponent $p(x,t)$</td>
<td>178</td>
</tr>
<tr>
<td>4.9.3</td>
<td>On the Regularity of Weak Solutions</td>
<td>181</td>
</tr>
</tbody>
</table>
5 Space Localization of Energy Solutions 185
 5.1 Introduction ... 185
 5.2 Localization via Diffusion-Absorption Balance 187
 5.2.1 The Basic Energy Relation 188
 5.2.2 Finite Speed of Propagation of Disturbances 189
 5.2.3 The Waiting Time Property 197
 5.3 Localization Caused by Anisotropic Diffusion 198
 5.3.1 Differential Inequality for the Energy Function 201
 5.3.2 Directional Stable Localization 204
 5.3.3 Infinite Waiting Time 205
 5.4 Localized Stationary Solutions 208
 5.5 Remarks .. 213
 5.5.1 Equations of General Form 214
 5.5.2 On the Cauchy Problem 215
 5.5.3 Localized Unbounded Solutions: An Example 216

6 Extinction in a Finite Time and the Large Time Behavior 219
 6.1 Introduction ... 219
 6.2 The Energy Relations ... 221
 6.2.1 Estimate on the Total Energy 222
 6.3 Differential Inequality for the Energy Function 224
 6.4 Vanishing in a Finite Time ... 227
 6.4.1 Sufficient Conditions for the Finite Time Extinction 227
 6.4.2 On the Balance Between Slow and Fast Diffusion 229
 6.5 Vanishing at a Prescribed Moment 231
 6.6 Large Time Behavior ... 234
 6.7 Limit Cases ... 236
 6.8 Remarks .. 238

7 Blow-up in Equations with Variable Nonlinearity 241
 7.1 Semilinear Equation with Variable Source 242
 7.1.1 The Differential Inequality 243
 7.1.2 Analysis of the Differential Inequality 245
 7.2 Equations with Vanishing Sources 247
 7.3 Various Extensions .. 250
 7.3.1 Eventually Linear Equations 250
 7.3.2 Equations with Vanishing Sources 251
 7.3.3 Regional Blow-up ... 251
 7.3.4 Equations with Nonlocal Sources 252
 7.3.5 Semilinear Equations of General Form 254
7.4 Equations with Anisotropic $p(x)$-Growth
7.4.1 The Energy Relations
7.4.2 Second-Order Differential Inequalities
7.5 Remarks
7.5.1 Higher-Order Equations
7.5.2 $p(x,t)$-Curl Systems Arising in Electromagnetism
7.5.3 Navier-Stokes Type Equations with Variable Structure

8 Equations with Double Isotropic Nonlinearity
8.1 Assumptions and Results
8.2 Regularized Problems
8.2.1 A Priori Estimates
8.3 Existence of Weak Solution
8.3.1 Step 1: $J_1^{(\varepsilon)} \to 0$ as $\varepsilon \to 0$
8.3.2 Step 2: $J_2^{(\varepsilon)} \to F(v,v)$ as $\varepsilon \to 0$
8.4 Comparison Principle and Uniqueness for Strong Solutions
8.4.1 Proof of Theorem 8.2: The case $a = 1$
8.4.2 Proof of Theorem 8.3: The case $a = 0$
8.5 Existence of Solutions $u \in \mathcal{W}(Q)$: L^1-Estimate for $\partial_t \Phi(z,v)$

9 Strong Solutions of Doubly Nonlinear Anisotropic Equations
9.1 Existence of Strong Solutions
9.2 Regularized Problem
9.2.1 Galerkin’s Approximations
9.2.2 A Priori Estimates
9.3 The Energy Inequality
9.4 Weak Solution of Regularized Problem
9.5 Bounded Solutions of Regularized Problem
9.6 Proof of the Existence Theorem
9.7 The Energy Relations for Strong Solutions

10 Anisotropic Equations with Double Nonlinearity: Blow-up and Vanishing
10.1 Strong Solutions
10.2 Sufficient Conditions of the Finite Time Blow-up
10.3 Embedding Inequalities in Anisotropic Spaces
10.4 Ordinary Differential Inequalities for the Energy Function
10.5 Extinction in a Finite Time .. 335
10.5.1 The Regular Case ... 335
10.5.2 The Limit Case .. 337
10.5.3 Equations with Critical Growth 339
10.6 Large Time Behavior ... 340

11 Wave Equation with $p(x, t)$-Laplacian 343
11.1 Local and Global Existence of Weak Solutions 345
11.1.1 Galerkin’s Approximations 347
11.1.2 Compactness and Passage to the Limit 354
11.2 Nonexistence of Global Solutions: Finite Time Blow up ... 359
11.3 Young Measure Solutions 364
11.3.1 Passage to the Limit as $\varepsilon \to 0$ 365
11.3.2 Lower Estimates for $\|u^\varepsilon\|_{\sigma, \Omega}$ Blow up 367

12 Semilinear Hyperbolic Equations 369
12.1 Weak and Strong Solutions 370
12.2 Local Existence Theorems 371
12.3 Nonexistence of Global Nonnegative Solutions 381
12.3.1 Ordinary Differential Inequalities 381
12.3.2 Blow-up .. 385
12.3.3 Regional Blow-up 388
12.4 Semilinear Equations of General Form 389

References .. 393

Index ... 407
Evolution PDEs with Nonstandard Growth Conditions
Existence, Uniqueness, Localization, Blow-up
Antontsev, S.; Shmarev, S.
2015, XVII, 409 p. 1 illus., Hardcover
A product of Atlantis Press