Contents

Calcined Clay-Cement Stabilisation – Physicochemical Attributes and Stabilised Strengths of a-1-a and a-2-6 Soils 1
O.A. Adekitan and G.M. Ayininuola

Sulfate Resistance of Cement Mortar Containing Metakaolin 8
Abdelsalam M. Akasha and Jamal M. Abdullah

Use of R^3 Rapid Screening Test to Determine Reactivity and Chloride Binding Potential of Locally Available Kaolinite Clay . . . 15
M. Almarshoud, J.L. Saint Rome, and K.A. Riding

Assessment of Cuban Kaolinitic Clays as Source of Supplementary Cementitious Materials to Production of Cement Based on Clinker – Calcined Clay – Limestone 21
Roger S. Almenares Reyes, Adrián Alujas Díaz, Sergio Betancourt Rodríguez, Carlos Alberto Leyva Rodríguez, and José Fernando Martirena Hernández

Proposal of a Methodology for the Preliminary Assessment of Kaolinitic Clay Deposits as a Source of SCMs 29
Adrián Alujas Díaz, Roger S Almenares Reyes, Florencio Arcial Carratalá, and José F. Martirena Hernández

Hydration Study of Limestone Calcined Clay Cement (LC^3) Using Various Grades of Calcined Kaolinitic Clays 35
F. Avet and K. Scrivener

Reaction Degree of Metakaolin in Limestone Calcined Clay Cement (LC^3) ... 41
F. Avet and K. Scrivener

Durability of Steam Cured Pozzolanic Mortars at Atmospheric Pressure ... 46
Kübra Ekiz Barış and Leyla Tanaçan
Use of Low-Carbon Cement in the Preparation of Masonry Mortars for Building Restoration ... 54
D. Betancourt Cura, Y. Lima Triana, and F. Martirena Hernandez

Quantification of Pore Size Distribution Modification Due to Metakaolin Inclusion in Cement Based Systems 60
B. Bhattacharjee

Limestone Calcined Clay Cement: The Experience in India This Far ... 64
Shashank Bishnoi and Soumen Maity

Pilot Scale Production of Limestone Calcined Clay Cement 69
Shashank Bishnoi, Soumen Maity, Mukesh Kumar, S.K. Saxena, and S.K. Wali

The Special Case of North-Eastern India for the Production of LC3 .. 75
Shashank Bishnoi, Soumen Maity, S.P. Pandey, and P.K. Tripathy

Comparative Study of Compressive Creep Behavior of Concrete with Metakaolin or Silica Fume 80
R. Bucher, H. Cagnon, T. Vidal, and M. Cyr

Effect of Carbonate Minerals and Calcination of Carbonatites and Kamafugites on Their Pozzolanic Performance and Early Age Concrete Properties .. 86
A. Buregyeya, Y. Ballim, S. Nwaubani, A.G. Kerali, and M. Otieno

Assessment of the Pozzolanic Reactivity of Calcined Kaolinitic Clays by a Rapid Alkaline Solubility Test 98
E. Cabrera, R. Almenares, and A. Alujas

Sustainability of Cuban Construction Supply Chain by Means of LC3 Cement: Case Studies in Villa Clara Province 105
Yudiesky Cancio Díaz, Inocencio Raúl Sánchez Machado, José Fernando Martirena Hernández, and Guillaume Habert

Degradation of Calcined Clay-Limestone Cementitious Composites Under Sulfate Attack .. 110
Cheng Yu, Peng Yuan, Xin Yu, and Jiaping Liu

Sulfate and Alkali-Silica Performance of Blended Cements Containing Illitic Calcined Clays 117
Gisela Cordoba, Agustín Rossetti, Dario Falcone, and E.F. Irassar

Use of Ceramic Waste as a Pozzolanic Addition on Cement 124
Rayda Crespo Castillo
Development of the Microstructure in LC³ Systems and Its Effect on Concrete Properties .. 131
Yuvaraj Dhandapani, K. Vignesh, Thangadurai Raja, and Manu Santhanam

Carbonation of Concrete with Low Carbon Cement LC3 Exposed to Different Environmental Conditions 141
Ernesto Díaz, Raúl González, Dayran Rocha, Adrian Alujas, and Fernando Martirena

Evaluation of Compressive Strength and Microstructure of Cement Pastes Containing Different Qualities of Metakaolin 147
N. Dumani and J. Mapiravana

Influence of Initial Water Curing on Strength and Microstructure Development of Blended Cements 155
A.C. Emmanuel, H. Talluru, S. Krishnan, and S. Bishnoi

Initial Performance Evaluation of Calcined Clay Based Ternary Blended Cement Under Various Climatic Conditions in India 160
A.C. Emmanuel, G. Mishra, and S. Bishnoi

Alkali Silica Reaction and Sulfate Attack: Expansion of Limestone Calcined Clay Cement .. 165
A. Favier and K. Scrivener

The Effect of Limestone on the Performance of Ternary Blended Cement LC3: Limestone, Calcined Clays and Cement 170
Aurélie Favier, Franco Zunino, Ioannis Katrantzis, and Karen Scrivener

Influence of Clay Type on Performance of Calcined Clay – Limestone Portland Cements .. 176
S. Ferreiro, D. Herfort, and J.S. Damtoft

Metakaolin-Based Geopolymers for Nuclear Waste Encapsulation 183
D.A. Geddes, X. Ke, S.A. Bernal, M. Hayes, and J.L. Provis

The Influence of Recycled Concrete and Clay Brick Particles on the Strength and Porosity of Cement-Based Pastes 189
T.M. Grabois, G.C. Cordeiro, and R.D. Toledo Filho

The Effect of Kaolinite Content of China Clay on the Reactivity of Limestone Calcined Clay Cement 195

The Effect of Alkali on the Properties of Limestone Calcined Clay Cement (LC³) ... 200
W. Hanpongpun and K. Scrivener
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>On the Reactivity of Calcined Clays from Lower Lusatia for the Production of Durable Concrete Structures</td>
<td>205</td>
</tr>
<tr>
<td>Klaus-Juergen Hueniger, Robert Gerasch, Ingolf Sander, and Maria Brigzinsky</td>
<td></td>
</tr>
<tr>
<td>Compressive Strength Improvements of Cement-Based Composites Achieved with Additional Milling of Metakaolin</td>
<td>212</td>
</tr>
<tr>
<td>Biljana Ilić, Aleksandra Mitrović, Vlastimir Radonjanin, Mirjana Malešev, and Miodrag Zdujić</td>
<td></td>
</tr>
<tr>
<td>Properties of the Cement-Based Composites with High Content of Metakaolin</td>
<td>219</td>
</tr>
<tr>
<td>Biljana Ilić, Vlastimir Radonjanin, Mirjana Malešev, Miodrag Zdujić, and Aleksandra Mitrović</td>
<td></td>
</tr>
<tr>
<td>Calcined Clays – Performance as Composite Material</td>
<td>226</td>
</tr>
<tr>
<td>Christian Kalb</td>
<td></td>
</tr>
<tr>
<td>Structural Ordering of Aged and Hydrothermally Cured Metakaolin Based Potassium Geopolymers</td>
<td>232</td>
</tr>
<tr>
<td>Xinyuan Ke, John L. Provis, and Susan A. Bernal</td>
<td></td>
</tr>
<tr>
<td>Carbonation of Limestone Calcined Clay Cement Concrete</td>
<td>238</td>
</tr>
<tr>
<td>M.S.H. Khan, Q.D. Nguyen, and A. Castel</td>
<td></td>
</tr>
<tr>
<td>Grinding of Calcined Clays and Its Effects on Cement Properties</td>
<td>244</td>
</tr>
<tr>
<td>W. Kluge and B.O. Assmann</td>
<td></td>
</tr>
<tr>
<td>Hydration and Mechanical Properties of Limestone Calcined Clay Cement Produced with Marble Dust</td>
<td>249</td>
</tr>
<tr>
<td>Sreejith Krishnan, Arun C. Emmanuel, Swadesh Kumar Kanaujia, and Shashank Bishnoi</td>
<td></td>
</tr>
<tr>
<td>Performance-Based Design Procedure Applied to the Selection of Low-CO₂ Binder Systems Including Calcined Clay</td>
<td>254</td>
</tr>
<tr>
<td>Wilson R. Leal da Silva, Lars N. Thrane, Thomas L. Svensson, Sergio Ferreiro, Duncan Herfort, Claus Pade, and Jesper S. Damtoft</td>
<td></td>
</tr>
<tr>
<td>Thermal Processing of Calcined Clay</td>
<td>262</td>
</tr>
<tr>
<td>J. Lemke and C. Berger</td>
<td></td>
</tr>
<tr>
<td>Thermal Transformation of Illitic-Chlorite Clay and Its Pozzolanic Activity</td>
<td>266</td>
</tr>
<tr>
<td>Roxana Lemma, Cristina C. Castellano, Viviana L. Bonavetti, Monica A. Trezza, Viviana F. Rahhal, and Edgardo F. Irassar</td>
<td></td>
</tr>
<tr>
<td>In-situ Observation of Dissolution Behavior of Carbonatite in Water Glass Solution</td>
<td>273</td>
</tr>
<tr>
<td>Jing Li, Jianqin Lin, Qijun Yu, Jie Hu, and Suhong Yin</td>
<td></td>
</tr>
</tbody>
</table>
Analysis of the Mixing Performance Containing the LC3 as Agglomerant with Different Types of Calcined Clay 279
D. Lins, J. Rêgo, and E. Silva

Evaluation of Calcined Clays from Boyaca-Colombia Containing Alunite as Supplementary Cementitious Materials 286
Ariam Lozano Perez and Mathieu Antoni

Improvement of the Environmental Energy Sustainability in the Production of Cement Portland with Addition of Thermally Activated Clays ... 293
I.L. Machado, H.I. Moya, S.B. Sánchez, and F. Martirena

Resource Mapping of China Clay for LC3 Application in India 299
A. Soumen Maity and B. Santanu Mithia

Chloride Transport Behavior of LC3 Binders 306
H. Maraghechi, F. Avet, and K. Scrivener

Blended Cements with Calcined Illitic Clay: Workability and Hydration ... 310
Guillermina Marchetti, Jaroslav Pokorny, Alejandra Tironi, Mónica A. Trezza, Viviana F. Rahhal, Zbyšek Pavlík, Robert Černý, and Edgardo F. Irassar

Low Carbon Cement LC3 in Cuba: Ways to Achieve a Sustainable Growth of Cement Production in Emerging Economies 318
Fernando Martirena and Karen Scrivener

Studies on the Influence of Limestone-Calcined Clay Blend on the Hydration of Cement ... 322
G. Mishra, A. Emmanuel, and S. Bishnoi

Thermal Resistivity of Chemically Activated Calcined Clays-Based Cements ... 327
Marangu J. Mwiti, Thiong’o J. Karanja, and Wachira J. Muthengia

Promising Early Age Evaluations of Fly Ash - Calcined Marl - OPC Ternary Cement ... 334
Serina Ng and Tone Østnor

Applicability of Lime Reactivity Strength Potential Test for the Reactivity Study of Limestone Calcined Clay Cement 339
Anuj Parashar, Vineet Shah, and Shashank Bishnoi

Limestone and Calcined Clay Blended Cement Used as Low-Cost Binder to Reduce Heat Production and Potential for Delayed Ettringite Formation ... 346
Jerry M. Paris and Christopher C. Ferraro
Contents

Reaction Kinetics of Basic Clay Components Present in Natural Mixed Clays .. 427
S. Scherb, N. Beuntner, and K.-C. Thienel

Colloid-Chemical Investigation of the Interaction Between PCE Superplasticizers and a Calcined Mixed Layer Clay 434
M. Schmid, N. Beuntner, K.-Ch. Thienel, and J. Plank

Prediction of Carbonation Depth in Blended Systems 440
V. Shah and S. Bishnoi

Autogenous Shrinkage and Creep of Limestone and Calcined Clay Based Binders .. 447
J. Ston, A. Hilaire, and K. Scrivener

Hydration of Blended Cement with Halloysite Calcined Clay 455
Alejandra Tironi, Fernanda Cravero, Alberto N. Scian, and Edgardo F. Irassar

Progress of Limestone Calcined Clay Cement in China 461
Sui Tongbo, Bin Wang, Yuliang Cai, and Shengliang Tang

Thermal Activation of Two Complex Clays (Kaolinite-Pyrophillite-Illite) from Tandilia System, Buenos Aires, Argentina .. 469
M.A. Trezza, A. Tironi, and E.F. Irassar

Assessment of Calcined Clays According to the Main Criteria of Concrete Durability .. 475
A. Trümer and H.-M Ludwig

Application of Industrially Produced LC3 to Pavements, AAC Blocks and Other Products ... 482
S.K. Wali, S.K. Saxena, Mukesh Kumar, Soumen Maity, and Shashank Bishnoi

Machine Learning Approaches to Admixture Design for Clay-Based Cements .. 488
N.R. Washburn, A. Menon, C.M. Childs, B. Poczos, and K.E. Kurtis

Micro-Chemo-Mechanical Characterization of a Limestone-Calcined-Clay Cement Paste by Statistical Nanoindentation and Quantitative SEM-EDS 494
William Wilson, Luca Sorelli, Sreejith Krishnan, Shashank Bishnoi, and Arezki Tagnit-Hamou

Addressing Key Challenges in MK-PLC Blends at Early Ages: Workability, Slump Retention, and Heat of Hydration 500
B.H. Zaribaf and K.E. Kurtis
Calcined Clays for Sustainable Concrete
Proceedings of the 2nd International Conference on Calcined Clays for Sustainable Concrete
Martirena, F.; Favier, A.; Scrivener, K. (Eds.)
2018, XXVI, 520 p. 306 illus., Hardcover