Contents

1 CO₂ Storage in Deep Geological Formations: The Concept 1
 John Gale
 1.1 Introduction .. 1
 1.2 What are the Effects of Increased Greenhouse Gas
 Concentrations in the Atmosphere? 2
 1.3 What are the Impacts of Climate Change? 3
 1.4 What Options do We Have? 4
 1.5 What are the Options to Mitigate CO₂ Emissions? 5
 1.6 What is Carbon Capture and Storage? 7
 1.7 Status of Geological Storage of CO₂ 9
 1.8 Outlook for CCS 11
 References ... 12

2 Overview of Processes Occurring During CO₂ Geological
 Storage and Their Relevance to Key Questions of Performance ... 15
 Chin-Fu Tsang and Auli Niemi
 2.1 Introduction .. 15
 2.2 Overview of Processes in a Basic Scenario 16
 2.3 Geological Settings and Characteristics 19
 2.4 Approach .. 21
 2.5 Key Questions 22
 2.5.1 Performance-Related Key Questions 23
 2.5.2 Risk-Related Key Questions 23
 2.6 Operational Strategy 24
 2.7 Features ... 25
 2.8 Processes .. 26
 2.8.1 Processes 26
 2.8.2 Process Representations in Macro-Scale Models 27
 2.8.3 Coupled Thermo-Hydro-Mechanical-Chemical
 Processes .. 28
2.9 An Attempt to Associate Features (F) and Processes (P) with Key Questions (KQ) 29
2.10 An Example Application to a Study of Large-Scale CO₂ Geosequestration at Two Potential Sites 29
 2.10.1 Case of Illinois Basin, Mount Simon Sandstone Formation 32
 2.10.2 Case of Southern San Joaquin Basin 35
 2.10.3 Discussion of the Two Cases 36
2.11 Concluding Remarks 38
References .. 38

3 Mathematical Modeling of CO₂ Storage in a Geological Formation .. 39
Jacob Bear and Jesus Carrera
3.1 Introduction .. 39
3.2 Properties of CO₂ and Saline Water 41
 3.2.1 Gibbs Phase Rule 41
 3.2.2 Properties of CO₂ 42
 3.2.3 Properties of Aqueous Phase 49
 3.2.4 Thermodynamic Properties of CO₂–H₂O Mixture 52
 3.2.5 Interfacial Properties 53
3.3 The Flow Model 54
 3.3.1 The General Microscopic Balance Equation for an Extensive Quantity 55
 3.3.2 The Microscopic Mass Balance Equation 56
 3.3.3 The General Macroscopic Balance Equation for an Extensive Quantity of a Fluid Phase 56
 3.3.4 The Single Phase Flow Model 58
 3.3.5 Integro-Differential Balance Equation 60
 3.3.6 The Two Phase Flow Model 61
3.4 The Reactive Transport Model 73
 3.4.1 Fluxes of Chemical Species 73
 3.4.2 The Mass Balance Equations of Chemical Species 78
 3.4.3 Coupling Chemistry to Transport: Simple Examples 79
 3.4.4 The Formulation of Reactions 88
 3.4.5 Coupled Equations 98
3.5 The Energy Transport Model 104
 3.5.1 The Energy Balance Equation 104
 3.5.2 Energy Fluxes 105
 3.5.3 Initial and Boundary Conditions 105
3.6 The Solid Matrix Deformation Model 106
 3.6.1 Stress, Strain and Effective Stress 107
 3.6.2 The Deformation Model 112
 3.6.3 Failure 115
4 Mathematical Modeling: Approaches for Model Solution
Auli Niemi, Zhibing Yang, Jesus Carrera, Henry Power, Christopher Ian McDermott, Dorothee Rebscher, Jan Lennard Wolf, Franz May, Bruno Figueiredo and Victor Vilarrasa

4.1 Different Approaches for Modeling CO₂ Geological Storage
4.1.1 High-Fidelity Hydrodynamic Modeling
4.1.2 Reduced-Physics Modeling
4.1.3 Analytical Solutions
4.1.4 Other Modeling Approaches

4.2 Modeling of the Coupled Processes
4.2.1 Introduction
4.2.2 Brief Overview of Coupled Processes
4.2.3 Thermal Process
4.2.4 Hydraulic Process
4.2.5 Mechanical Processes
4.2.6 Chemical Transport
4.2.7 Solution of the Equation Systems

4.3 Modeling of the Small Scale Effects
4.3.1 Convective Dissolution
4.3.2 Viscous Fingering

4.4 Example Case Studies
4.4.1 Modeling of Large Scale Systems
4.4.2 Modeling of Coupled Hydro-Geochemical Processes
4.4.3 Modeling of Coupled Hydro-Mechanical Systems

References
6 Laboratory Experiments ... 249
Philippe Gouze, Katriona Edlmann, Christopher Ian McDermott
and Linda Luquot
6.1 Introduction .. 249
6.2 Measuring Hydrodynamical Properties 251
6.2.1 Porosity and Structural Parameters 252
6.2.2 Hydrodynamical Properties for Single Fluid Flow 257
6.2.3 Measuring Capillary Pressure and Relative
Permeability for scCO₂-Brine Systems 263
6.3 Experiments for Solid Matrix Mechanical Properties 272
6.3.1 Static Elastic Moduli Testing 273
6.3.2 Strength Parameter Testing 273
6.3.3 Implications and Remaining Issues for CCS 275
6.4 Fluid-Rock Interactions and Properties Changes 277
6.4.1 Rationale 278
6.4.2 Batch Experiments, 280
6.4.3 Flow-Through Experiments 284
6.4.4 Examples of Experimental Studies
of Fluid-Rock Interactions 291
References .. 302
7 Site Characterization ... 309
Auli Niemi, Katriona Edlmann, Jesus Carrera, Christopher Juřin,
Alexandru Tatomir, Iulia Ghergut, Martin Sauter, Jacob Bensabat,
Fritjof Fagerlund, Francois H. Cornet, Victor Vilarrasa
and Christopher Ian McDermott
7.1 Background .. 310
7.2 Geological Characterization 314
7.2.1 Large Scale Geology 315
7.2.2 Reservoir Petrophysics from Well Log-Scale
Observations .. 320
7.2.3 Reservoir Petrophysics—Core-to-Pore Scale Observations 321

7.3 Dynamic Characterization—Hydraulic, Tracer and Thermal Properties 322

7.3.1 Hydraulic Tests 323

7.3.2 Tracer Methods for Characterization of the CO₂ Storage Sites 333

7.3.3 Characterization of the Thermal Properties 343

7.4 CO₂ Injection Tests as a Characterization Method 348

7.4.1 Field-Scale Residual and Dissolution Trapping 348

7.4.2 Field Measurements Related to Two-Phase Flow and Trapping 349

7.4.3 Single-Well Push–Pull Test for Quantification of Residual Trapping 352

7.4.4 Two-Well Test for Quantification of Residual Trapping and Dissolution 355

7.5 Geomechanical Characterization 360

7.5.1 Geomaterials, Fracture Fields and Faults 361

7.5.2 Dynamic Elastic Properties of Geomaterials and Their Spatial Variations 362

7.5.3 Regional Stress Field Evaluation 365

7.5.4 Vertical Stress Profiles and the Characterization of the Rheology of Geomaterials 368

7.5.5 Scale Effects of the Mechanical Properties 368

References 372

8 Field Injection Operations and Monitoring of the Injected CO₂ 381

Auli Niemi, Jacob Bensabat, Peter Bergmann, Christopher Juhlin, Alexandru Tatomir, Iulia Ghergut, Martin Sauter, Barry Freifeld, Larry Myer, Christine Doughty, Axel Liebscher, Stefan Lüth, Sonja Martens, Fabian Möller, Cornelia Schmidt-Hattenberger and Martin Streibel

8.1 Background on Monitoring 382

8.2 Geophysical Methods 389

8.2.1 Overview of Geophysical Methods 389

8.2.2 Seismic Methods 391

8.2.3 Geoelectric Methods 399

8.3 Tracer Tests for Monitoring CO₂ Plume Migration 404

8.4 Well Instrumentation 408

8.4.1 Objective of a Borehole Monitoring Program 408

8.4.2 Monitoring Environmental Challenges 409

8.4.3 Monitoring Technologies 410

8.4.4 Fiber Optic Technologies 412

8.4.5 Instrumentation Deployment Strategies 413
8.4.6 Example of an Integrated Monitoring Installation:
Heletz H18a ... 415
8.4.7 Conclusions 417
8.5 Monitoring Results from Selected Large Scale
Field Projects .. 419
8.5.1 Sleipner .. 420
8.5.2 In Salah .. 423
8.5.3 Weyburn-Midale 427
8.5.4 Discussion of Field Study Results 430
8.6 Pilot Scale CO₂ Injection and Monitoring: Frio Site 432
8.6.1 Geologic Setting and Development of Geologic
Model ... 432
8.6.2 Site Characterization 437
8.6.3 CO₂ Injection and Monitoring 440
8.6.4 Discussion 448
8.6.5 Concluding Remarks 450
8.7 Pilot Scale CO₂ Injection at the Ketzin Site: Experiences
from the First European On-Shore Storage Site 452
8.7.1 Introduction 452
8.7.2 Site Location and Geology 453
8.7.3 Research Infrastructure at the Ketzin Site 453
8.7.4 Injection Operation and History 456
8.7.5 Monitoring 456
8.7.6 Public Outreach Activities 461
8.7.7 Conclusions and Outlook 461
References ... 462

9 Natural Analogue Studies 473
Christopher Ian McDermott, Johannes M. Miocic,
Katrina Edlmann and Stuart M.V. Gilfillan
9.1 Introduction 473
9.2 Natural Analogue Sites and Key Storage Controls 476
9.2.1 Properties of Naturally Occurring CO₂ Reservoirs... 478
9.2.2 Mechanisms of CO₂ Migration at Naturally
 Occurring CO₂ Reservoirs 484
9.3 Implications for Engineered CO₂ Storage Sites 486
9.4 Geomechanical Facies Approach for Characterization 487
9.5 Geomechanical Facies Models 494
9.5.1 Otway, Australia: CO₂ Storage Project 494
9.5.2 In Salah, Algeria: CO₂ Storage Project 498
9.5.3 Sleipner, Norway: CO₂ Storage Project 498
9.5.4 Snøhvit, Norway: CO₂ Storage Project 503
9.5.5 Buracica, Brazil: CO₂ EOR 503
9.5.6 Miller Field, UK North Sea: Natural
 CO₂ Reservoir 508
Geological Storage of CO2 in Deep Saline Formations
Niemi, A.; Bear, J.; Bensabat, J. (Eds.)
2017, XIX, 554 p. 154 illus., 115 illus. in color.,
Hardcover