Contents

1 CO₂ Storage in Deep Geological Formations: The Concept 1
 John Gale
 1.1 Introduction .. 1
 1.2 What are the Effects of Increased Greenhouse Gas
 Concentrations in the Atmosphere? 2
 1.3 What are the Impacts of Climate Change? 3
 1.4 What Options do We Have? 4
 1.5 What are the Options to Mitigate CO₂ Emissions? 5
 1.6 What is Carbon Capture and Storage? 7
 1.7 Status of Geological Storage of CO₂ 9
 1.8 Outlook for CCS 11
 References ... 12

2 Overview of Processes Occurring During CO₂ Geological
 Storage and Their Relevance to Key Questions of Performance ... 15
 Chin-Fu Tsang and Auli Niemi
 2.1 Introduction .. 15
 2.2 Overview of Processes in a Basic Scenario 16
 2.3 Geological Settings and Characteristics 19
 2.4 Approach .. 21
 2.5 Key Questions 22
 2.5.1 Performance-Related Key Questions 23
 2.5.2 Risk-Related Key Questions 23
 2.6 Operational Strategy 24
 2.7 Features ... 25
 2.8 Processes .. 26
 2.8.1 Processes 26
 2.8.2 Process Representations in Macro-Scale Models 27
 2.8.3 Coupled Thermo-Hydro-Mechanical-Chemical
 Processes 28
2.9 An Attempt to Associate Features (F) and Processes (P) with Key Questions (KQ) .. 29

2.10 An Example Application to a Study of Large-Scale CO₂ Geosequestration at Two Potential Sites 29
2.10.1 Case of Illinois Basin, Mount Simon Sandstone Formation .. 32
2.10.2 Case of Southern San Joaquin Basin 35
2.10.3 Discussion of the Two Cases 36

2.11 Concluding Remarks .. 38
References .. 38

3 Mathematical Modeling of CO₂ Storage in a Geological Formation ... 39
Jacob Bear and Jesus Carrera

3.1 Introduction .. 39

3.2 Properties of CO₂ and Saline Water 41
3.2.1 Gibbs Phase Rule 41
3.2.2 Properties of CO₂ 42
3.2.3 Properties of Aqueous Phase 49
3.2.4 Thermodynamic Properties of CO₂–H₂O Mixture 52
3.2.5 Interfacial Properties 53

3.3 The Flow Model 54
3.3.1 The General Microscopic Balance Equation for an Extensive Quantity .. 55
3.3.2 The Microscopic Mass Balance Equation 56
3.3.3 The General Macroscopic Balance Equation for an Extensive Quantity of a Fluid Phase 56
3.3.4 The Single Phase Flow Model 58
3.3.5 Integro-Differential Balance Equation 60
3.3.6 The Two Phase Flow Model 61

3.4 The Reactive Transport Model 73
3.4.1 Fluxes of Chemical Species 73
3.4.2 The Mass Balance Equations of Chemical Species 78
3.4.3 Coupling Chemistry to Transport: Simple Examples ... 79
3.4.4 The Formulation of Reactions 88
3.4.5 Coupled Equations 98

3.5 The Energy Transport Model 104
3.5.1 The Energy Balance Equation 104
3.5.2 Energy Fluxes .. 105
3.5.3 Initial and Boundary Conditions 105

3.6 The Solid Matrix Deformation Model 106
3.6.1 Stress, Strain and Effective Stress 107
3.6.2 The Deformation Model 112
3.6.3 Failure ... 115
3.6.4 Equilibrium 116
3.6.5 Initial and Boundary Conditions 118

3.7 Concluding Remarks 119

Appendix: Primary Variables and Degrees of Freedom 121
Extension of Gibbs Phase Rule 121
Degrees of Freedom for Phases in Motion 122
Degrees of Freedom Under Approximate Chemical and Thermal Equilibrium 123

References ... 124

4 Mathematical Modeling: Approaches for Model Solution ... 129
Auli Niemi, Zhibing Yang, Jesus Carrera, Henry Power,
Christopher Ian McDermott, Dorothee Rebscher, Jan Lennard Wolf,
Franz May, Bruno Figueiredo and Victor Vilarrasa

4.1 Different Approaches for Modeling CO₂ Geological Storage . . . 130
4.1.1 High-Fidelity Hydrodynamic Modeling 131
4.1.2 Reduced-Physics Modeling 136
4.1.3 Analytical Solutions 139
4.1.4 Other Modeling Approaches 143

4.2 Modeling of the Coupled Processes 144
4.2.1 Introduction 144
4.2.2 Brief Overview of Coupled Processes 145
4.2.3 Thermal Process 146
4.2.4 Hydraulic Process 147
4.2.5 Mechanical Processes 148
4.2.6 Chemical Transport 148
4.2.7 Solution of the Equation Systems 148

4.3 Modeling of the Small Scale Effects 150
4.3.1 Convective Dissolution 150
4.3.2 Viscous Fingering 156

4.4 Example Case Studies 168
4.4.1 Modeling of Large Scale Systems 168
4.4.2 Modeling of Coupled Hydro-Geochemical Processes 170
4.4.3 Modeling of Coupled Hydro-Mechanical Systems 173

References ... 177

5 Upscaling and Scale Effects 187
Marco Dentz, Jesus Carrera and Juan Hidalgo

5.1 Scale Effects .. 187
5.2 Single Phase Flow 190
5.2.1 Pore to Darcy Scale 190
5.2.2 Darcy to Field Scale 194
5.3 Solute Transport 203
 5.3.1 Pore to Darcy Scale 204
 5.3.2 Darcy to Field Scale 210
5.4 Reactive Transport 219
 5.4.1 Pore to Darcy Scale 220
 5.4.2 Darcy to Field Scale 224
5.5 Multiphase Flow 226
 5.5.1 Macrodispersion Two-Phase Flow Model 228
 5.5.2 Multicontinuum Two-Phase Flow Model 233
 5.5.3 Vertically Integrated Models 236
 5.5.4 Convective Mixing 239
References ... 241

6 Laboratory Experiments 249
Philippe Gouze, Katriona Edlmann, Christopher Ian McDermott
and Linda Luquot
6.1 Introduction .. 249
6.2 Measuring Hydrodynamical Properties 251
 6.2.1 Porosity and Structural Parameters 252
 6.2.2 Hydrodynamical Properties for Single Fluid Flow ... 257
 6.2.3 Measuring Capillary Pressure and Relative
 Permeability for scCO₂-Brine Systems 263
6.3 Experiments for Solid Matrix Mechanical Properties 272
 6.3.1 Static Elastic Moduli Testing 273
 6.3.2 Strength Parameter Testing 273
 6.3.3 Implications and Remaining Issues for CCS 275
6.4 Fluid-Rock Interactions and Properties Changes 277
 6.4.1 Rationale 278
 6.4.2 Batch Experiments, 280
 6.4.3 Flow-Through Experiments 284
 6.4.4 Examples of Experimental Studies
 of Fluid-Rock Interactions 291
References ... 302

7 Site Characterization 309
Auli Niemi, Katriona Edlmann, Jesus Carrera, Christopher Juhlin,
Alexandru Tatmir, Iulia Ghergut, Martin Sauter, Jacob Bensabat,
Fritjof Fagerlund, Francois H. Cornet, Victor Vilarrasa
and Christopher Ian McDermott
7.1 Background .. 310
7.2 Geological Characterization 314
 7.2.1 Large Scale Geology 315
 7.2.2 Reservoir Petrophysics from Well Log-Scale
 Observations 320
7.2.3 Reservoir Petrophysics—Core-to-Pore Scale Observations 321
7.3 Dynamic Characterization—Hydraulic, Tracer and Thermal Properties 322
7.3.1 Hydraulic Tests 323
7.3.2 Tracer Methods for Characterization of the CO₂ Storage Sites 333
7.3.3 Characterization of the Thermal Properties ... 343
7.4 CO₂ Injection Tests as a Characterization Method ... 348
7.4.1 Field-Scale Residual and Dissolution Trapping .. 348
7.4.2 Field Measurements Related to Two-Phase Flow and Trapping 349
7.4.3 Single-Well Push–Pull Test for Quantification of Residual Trapping 352
7.4.4 Two-Well Test for Quantification of Residual Trapping and Dissolution 355
7.5 Geomechanical Characterization ... 360
7.5.1 Geomaterials, Fracture Fields and Faults ... 361
7.5.2 Dynamic Elastic Properties of Geomaterials and Their Spatial Variations 362
7.5.3 Regional Stress Field Evaluation .. 365
7.5.4 Vertical Stress Profiles and the Characterization of the Rheology of Geomaterials 368
7.5.5 Scale Effects of the Mechanical Properties .. 368
References ... 372

8 Field Injection Operations and Monitoring of the Injected CO₂ 381
Auli Niemi, Jacob Bensabat, Peter Bergmann, Christopher Juhlin, Alexandru Tatomir, Iulia Ghergut, Martin Sauter, Barry Freifeld, Larry Myer, Christine Doughty, Axel Liebscher, Stefan Lüth, Sonja Martens, Fabian Möller, Cornelia Schmidt-Hattenberger and Martin Streibel
8.1 Background on Monitoring .. 382
8.2 Geophysical Methods ... 389
8.2.1 Overview of Geophysical Methods .. 389
8.2.2 Seismic Methods .. 391
8.2.3 Geoelectric Methods .. 399
8.3 Tracer Tests for Monitoring CO₂ Plume Migration ... 404
8.4 Well Instrumentation ... 408
8.4.1 Objective of a Borehole Monitoring Program ... 408
8.4.2 Monitoring Environmental Challenges .. 409
8.4.3 Monitoring Technologies .. 410
8.4.4 Fiber Optic Technologies .. 412
8.4.5 Instrumentation Deployment Strategies ... 413
<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4.6</td>
<td>Example of an Integrated Monitoring Installation: Heletz H18a .. 415</td>
</tr>
<tr>
<td>8.4.7</td>
<td>Conclusions .. 417</td>
</tr>
<tr>
<td>8.5</td>
<td>Monitoring Results from Selected Large Scale Field Projects .. 419</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Sleipner .. 420</td>
</tr>
<tr>
<td>8.5.2</td>
<td>In Salah ... 423</td>
</tr>
<tr>
<td>8.5.3</td>
<td>Weyburn-Midale 427</td>
</tr>
<tr>
<td>8.5.4</td>
<td>Discussion of Field Study Results 430</td>
</tr>
<tr>
<td>8.6</td>
<td>Pilot Scale CO₂ Injection and Monitoring: Frio Site 432</td>
</tr>
<tr>
<td>8.6.1</td>
<td>Geologic Setting and Development of Geologic Model .. 432</td>
</tr>
<tr>
<td>8.6.2</td>
<td>Site Characterization 437</td>
</tr>
<tr>
<td>8.6.3</td>
<td>CO₂ Injection and Monitoring 440</td>
</tr>
<tr>
<td>8.6.4</td>
<td>Discussion ... 448</td>
</tr>
<tr>
<td>8.6.5</td>
<td>Concluding Remarks 450</td>
</tr>
<tr>
<td>8.7</td>
<td>Pilot Scale CO₂ Injection at the Ketzin Site: Experiences from the First European On-Shore Storage Site 452</td>
</tr>
<tr>
<td>8.7.1</td>
<td>Introduction .. 452</td>
</tr>
<tr>
<td>8.7.2</td>
<td>Site Location and Geology 453</td>
</tr>
<tr>
<td>8.7.3</td>
<td>Research Infrastructure at the Ketzin Site 453</td>
</tr>
<tr>
<td>8.7.4</td>
<td>Injection Operation and History 456</td>
</tr>
<tr>
<td>8.7.5</td>
<td>Monitoring ... 456</td>
</tr>
<tr>
<td>8.7.6</td>
<td>Public Outreach Activities 461</td>
</tr>
<tr>
<td>8.7.7</td>
<td>Conclusions and Outlook 461</td>
</tr>
<tr>
<td>References</td>
<td>.. 462</td>
</tr>
</tbody>
</table>

9 Natural Analogue Studies .. 473

Christopher Ian McDermott, Johannes M. Miocic, Katrin Edlmann and Stuart M.V. Gilfillan

9.1 Introduction .. 473

9.2 Natural Analogue Sites and Key Storage Controls 476

9.2.1 Properties of Naturally Occurring CO₂ Reservoirs 478

9.2.2 Mechanisms of CO₂ Migration at Naturally Occurring CO₂ Reservoirs 484

9.3 Implications for Engineered CO₂ Storage Sites 486

9.4 Geomechanical Facies Approach for Characterization 487

9.5 Geomechanical Facies Models .. 494

9.5.1 Otway, Australia: CO₂ Storage Project 494

9.5.2 In Salah, Algeria: CO₂ Storage Project 498

9.5.3 Sleipner, Norway: CO₂ Storage Project 498

9.5.4 Snøhvit, Norway: CO₂ Storage Project 503

9.5.5 Buracica, Brazil: CO₂ EOR 503

9.5.6 Miller Field, UK North Sea: Natural CO₂ Reservoir 508
9.5.7 St. Johns Dome, USA: Natural CO₂ Reservoir 509
9.5.8 Fizzy Field, UK Southern North Sea: Natural CO₂ Reservoir. 511
9.6 Conclusions .. 516
References ... 516

10 Risk Management for CO₂ Geological Storage Projects. 521
Yvi Le Guen, Stéphanie Dias, Olivier Poupard, Katriona Edlmann and Christopher Ian McDermott

10.1 Introduction .. 521
10.2 Risk Management Policy 525
10.3 Establishment of the Context 525
 10.3.1 Scope of the Study 526
 10.3.2 Internal and External Entities 526
 10.3.3 Constraints 527
 10.3.4 Risk Criteria 528
10.4 Risk Assessment 530
 10.4.1 Risk Identification 531
 10.4.2 Risk Estimation 533
 10.4.3 Expert Elicitation 534
 10.4.4 Risk Evaluation 535
 10.4.5 Description of Risk Treatment Process 535
 10.4.6 Preparing and Implementing Risk Treatment Plans 537
10.5 Risk Monitoring, Review and Reporting 538
 10.5.1 Objectives 538
 10.5.2 Risk Monitoring 538
 10.5.3 Risk Review 538
 10.5.4 Risk Reporting 538
10.6 Conclusion ... 539
References ... 539

Index .. 543
Geological Storage of CO2 in Deep Saline Formations
Niemi, A.; Bear, J.; Bensabat, J. (Eds.)
2017, XIX, 554 p. 154 illus., 115 illus. in color.,
Hardcover