Contents

1 CO$_2$ Storage in Deep Geological Formations: The Concept 1
John Gale
 1.1 Introduction .. 1
 1.2 What are the Effects of Increased Greenhouse Gas
 Concentrations in the Atmosphere? 2
 1.3 What are the Impacts of Climate Change? 3
 1.4 What Options do We Have? 4
 1.5 What are the Options to Mitigate CO$_2$ Emissions? 5
 1.6 What is Carbon Capture and Storage? 7
 1.7 Status of Geological Storage of CO$_2$ 9
 1.8 Outlook for CCS 11
References ... 12

2 Overview of Processes Occurring During CO$_2$ Geological
 Storage and Their Relevance to Key Questions of Performance ... 15
Chin-Fu Tsang and Auli Niemi
 2.1 Introduction .. 15
 2.2 Overview of Processes in a Basic Scenario 16
 2.3 Geological Settings and Characteristics 19
 2.4 Approach .. 21
 2.5 Key Questions 22
 2.5.1 Performance-Related Key Questions 23
 2.5.2 Risk-Related Key Questions 23
 2.6 Operational Strategy 24
 2.7 Features ... 25
 2.8 Processes .. 26
 2.8.1 Processes 26
 2.8.2 Process Representations in Macro-Scale Models 27
 2.8.3 Coupled Thermo-Hydro-Mechanical-Chemical
 Processes 28
2.9 An Attempt to Associate Features (F) and Processes (P) with Key Questions (KQ) .. 29
2.10 An Example Application to a Study of Large-Scale CO₂ Geosequestration at Two Potential Sites 29
 2.10.1 Case of Illinois Basin, Mount Simon Sandstone Formation .. 32
 2.10.2 Case of Southern San Joaquin Basin 35
 2.10.3 Discussion of the Two Cases 36
2.11 Concluding Remarks 38
References .. 38

3 Mathematical Modeling of CO₂ Storage in a Geological Formation .. 39
Jacob Bear and Jesus Carrera
3.1 Introduction .. 39
3.2 Properties of CO₂ and Saline Water 41
 3.2.1 Gibbs Phase Rule 41
 3.2.2 Properties of CO₂ 42
 3.2.3 Properties of Aqueous Phase 49
 3.2.4 Thermodynamic Properties of CO₂–H₂O Mixture 52
 3.2.5 Interfacial Properties 53
3.3 The Flow Model .. 54
 3.3.1 The General Microscopic Balance Equation for an Extensive Quantity ... 55
 3.3.2 The Microscopic Mass Balance Equation 56
 3.3.3 The General Macroscopic Balance Equation for an Extensive Quantity of a Fluid Phase 56
 3.3.4 The Single Phase Flow Model 58
 3.3.5 Integro-Differential Balance Equation 60
 3.3.6 The Two Phase Flow Model 61
3.4 The Reactive Transport Model 73
 3.4.1 Fluxes of Chemical Species 73
 3.4.2 The Mass Balance Equations of Chemical Species ... 78
 3.4.3 Coupling Chemistry to Transport: Simple Examples ... 79
 3.4.4 The Formulation of Reactions 88
 3.4.5 Coupled Equations 98
3.5 The Energy Transport Model 104
 3.5.1 The Energy Balance Equation 104
 3.5.2 Energy Fluxes 105
 3.5.3 Initial and Boundary Conditions 105
3.6 The Solid Matrix Deformation Model 106
 3.6.1 Stress, Strain and Effective Stress 107
 3.6.2 The Deformation Model 112
 3.6.3 Failure .. 115
3.6.4 Equilibrium 116
3.6.5 Initial and Boundary Conditions 118
3.7 Concluding Remarks 119
Appendix: Primary Variables and Degrees of Freedom 121
 Extension of Gibbs Phase Rule 121
 Degrees of Freedom for Phases in Motion 122
 Degrees of Freedom Under Approximate Chemical and Thermal Equilibrium 123
References ... 124

4 Mathematical Modeling: Approaches for Model Solution 129
Auli Niemi, Zhibing Yang, Jesus Carrera, Henry Power,
Christopher Ian McDermott, Dorothee Rebscher, Jan Lennard Wolf,
Franz May, Bruno Figueiredo and Victor Vilarrasa
4.1 Different Approaches for Modeling CO₂ Geological Storage . 130
 4.1.1 High-Fidelity Hydrodynamic Modeling 131
 4.1.2 Reduced-Physics Modeling 136
 4.1.3 Analytical Solutions 139
 4.1.4 Other Modeling Approaches 143
4.2 Modeling of the Coupled Processes 144
 4.2.1 Introduction 144
 4.2.2 Brief Overview of Coupled Processes 145
 4.2.3 Thermal Process 146
 4.2.4 Hydraulic Process 147
 4.2.5 Mechanical Processes 148
 4.2.6 Chemical Transport 148
 4.2.7 Solution of the Equation Systems 148
4.3 Modeling of the Small Scale Effects 150
 4.3.1 Convective Dissolution 150
 4.3.2 Viscous Fingering 156
4.4 Example Case Studies 168
 4.4.1 Modeling of Large Scale Systems 168
 4.4.2 Modeling of Coupled Hydro-Geochemical Processes ... 170
 4.4.3 Modeling of Coupled Hydro-Mechanical Systems ... 173
References ... 177

5 Upscaling and Scale Effects 187
Marco Dentz, Jesus Carrera and Juan Hidalgo
5.1 Scale Effects .. 187
5.2 Single Phase Flow 190
 5.2.1 Pore to Darcy Scale 190
 5.2.2 Darcy to Field Scale 194
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3</td>
<td>Solute Transport</td>
<td>203</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Pore to Darcy Scale</td>
<td>204</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Darcy to Field Scale</td>
<td>210</td>
</tr>
<tr>
<td>5.4</td>
<td>Reactive Transport</td>
<td>219</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Pore to Darcy Scale</td>
<td>220</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Darcy to Field Scale</td>
<td>224</td>
</tr>
<tr>
<td>5.5</td>
<td>Multiphase Flow</td>
<td>226</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Macrodispersion Two-Phase Flow Model</td>
<td>228</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Multicontinuum Two-Phase Flow Model</td>
<td>233</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Vertically Integrated Models</td>
<td>236</td>
</tr>
<tr>
<td>5.5.4</td>
<td>Convective Mixing</td>
<td>239</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>241</td>
</tr>
<tr>
<td>6</td>
<td>Laboratory Experiments</td>
<td>249</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>249</td>
</tr>
<tr>
<td>6.2</td>
<td>Measuring Hydrodynamical Properties</td>
<td>251</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Porosity and Structural Parameters</td>
<td>252</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Hydrodynamical Properties for Single Fluid Flow</td>
<td>257</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Measuring Capillary Pressure and Relative Permeability for scCO₂-Brine Systems</td>
<td>263</td>
</tr>
<tr>
<td>6.3</td>
<td>Experiments for Solid Matrix Mechanical Properties</td>
<td>272</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Static Elastic Moduli Testing</td>
<td>273</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Strength Parameter Testing</td>
<td>273</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Implications and Remaining Issues for CCS</td>
<td>275</td>
</tr>
<tr>
<td>6.4</td>
<td>Fluid-Rock Interactions and Properties Changes</td>
<td>277</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Rationale</td>
<td>278</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Batch Experiments</td>
<td>280</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Flow-Through Experiments</td>
<td>284</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Examples of Experimental Studies of Fluid-Rock Interactions</td>
<td>291</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>302</td>
</tr>
<tr>
<td>7</td>
<td>Site Characterization</td>
<td>309</td>
</tr>
<tr>
<td>7.1</td>
<td>Background</td>
<td>310</td>
</tr>
<tr>
<td>7.2</td>
<td>Geological Characterization</td>
<td>314</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Large Scale Geology</td>
<td>315</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Reservoir Petrophysics from Well Log-Scale Observations</td>
<td>320</td>
</tr>
</tbody>
</table>
8.4.6 Example of an Integrated Monitoring Installation:
Heletz H18a .. 415
8.4.7 Conclusions 417
8.5 Monitoring Results from Selected Large Scale Field Projects .. 419
8.5.1 Sleipner 420
8.5.2 In Salah 423
8.5.3 Weyburn-Midale 427
8.5.4 Discussion of Field Study Results 430
8.6 Pilot Scale CO₂ Injection and Monitoring: Frio Site .. 432
8.6.1 Geologic Setting and Development of Geologic Model .. 432
8.6.2 Site Characterization 437
8.6.3 CO₂ Injection and Monitoring 440
8.6.4 Discussion 448
8.6.5 Concluding Remarks 450
8.7 Pilot Scale CO₂ Injection at the Ketzin Site: Experiences from the First European On-Shore Storage Site 452
8.7.1 Introduction 452
8.7.2 Site Location and Geology 453
8.7.3 Research Infrastructure at the Ketzin Site 453
8.7.4 Injection Operation and History 456
8.7.5 Monitoring 456
8.7.6 Public Outreach Activities 461
8.7.7 Conclusions and Outlook 461
References ... 462

9 Natural Analogue Studies .. 473
Christopher Ian McDermott, Johannes M. Miocic,
Katriona Edlmann and Stuart M.V. Gilfillan
9.1 Introduction .. 473
9.2 Natural Analogue Sites and Key Storage Controls .. 476
9.2.1 Properties of Naturally Occurring CO₂ Reservoirs 478
9.2.2 Mechanisms of CO₂ Migration at Naturally Occurring CO₂ Reservoirs 484
9.3 Implications for Engineered CO₂ Storage Sites .. 486
9.4 Geomechanical Facies Approach for Characterization .. 487
9.5 Geomechanical Facies Models .. 494
9.5.1 Otway, Australia: CO₂ Storage Project .. 494
9.5.2 In Salah, Algeria: CO₂ Storage Project .. 498
9.5.3 Sleipner, Norway: CO₂ Storage Project .. 498
9.5.4 Snøhvit, Norway: CO₂ Storage Project .. 503
9.5.5 Buracica, Brazil: CO₂ EOR .. 503
9.5.6 Miller Field, UK North Sea: Natural CO₂ Reservoir .. 508
Geological Storage of CO2 in Deep Saline Formations
Niemi, A.; Bear, J.; Bensabat, J. (Eds.)
2017, XIX, 554 p. 154 illus., 115 illus. in color.,
Hardcover