Contents

Part I Pharmacology

1 Overview of Modern Research on Danshen
Guanhua Du and Juntian Zhang
1.1 General Situation of Application and Research
 of Danshen
1.2 The Research on the Chemical Components
 of Danshen
 1.2.1 Overview
 1.2.2 Research on Liposoluble Components
 of Danshen
 1.2.3 Research on the Hydrosoluble Chemical
 Components of Danshen
 1.2.4 Research Methods for the Chemical
 Components
1.3 Research on the Active Components of Danshen
 and Their Pharmacological Actions
 1.3.1 Pharmacological Actions
 of the Liposoluble Components of Danshen
 1.3.2 Pharmacological Actions of the Hydrosoluble
 Components of Danshen
1.4 Development of the Preparations of Danshen
 1.4.1 Danshen Preparations Used for Research
 Purposes
 1.4.2 Clinically Used Danshen Preparations
1.5 Research on the Pharmacological Actions
 of Danshen
 1.5.1 Circulatory System
 1.5.2 Liver Diseases
 1.5.3 Kidney Diseases
 1.5.4 Respiratory Diseases
 1.5.5 Cancers
 1.5.6 Effects on Immunologic Functions
 1.5.7 Others
1.6 Clinical Applications of Danshen
 1.6.1 Treatment of Cardiovascular
 and cerebrovascular Diseases
 1.6.2 Treatment of Hepatic and Renal Diseases

xiii
2 The Pharmacological Actions of Danshen ThemeD Formulas 19
Zhihao Jiang, Yi Wang, Xiumei Gao, Hongcai Shang and Xiaoying Wang
2.1 Composite Danshen Dropping Pill 19
 2.1.1 Compatibility Studies on Compound Danshen Dropping Pill (CDDP) 19
 2.1.2 Pharmacological Research 22
2.2 The Pharmacological Functions of Other Danshen-Containing Prescriptions 25
 2.2.1 Composite Danshen Injection 25
 2.2.2 Dan-Qi Hemiplegia Capsules 29
 2.2.3 Compound Radix Codonopsis Tablet 30
 2.2.4 Xinijing Capsules 32
 2.2.5 Fufang Xueshuantong Capsule (Copound Xue-Shuantong Capsule). 33
 2.2.6 Guanxinning Injection 35
 2.2.7 Bushenyishou Capsule 36
 2.2.8 Huganning Tablet 39
 2.2.9 Xinmaitong Tablet 39
 2.2.10 Ningxinanshen Capsule 41
 2.2.11 Ningshenbuxin Tablet 41
 2.2.12 Yangxinshi Tablet 42
 2.2.13 Rukuaxinxin Tablet 44
References ... 46

3 Active Constituents in Danshen and Their Pharmacological Actions 49
Ailin Liu, Yitao Wang, Guanhua Du, Xiuying Yang, Juntian Zhang, Minke Tang, Ji Chen, Yonghong Chen, Zhiwei Qu, Jie Wang, Xiaoying Wang, Yan Sun, Ping Chen and Chuan Li
3.1 Major Constituents and Their Pharmacological Actions ... 49
 3.1.1 Liposoluble Constituents 49
 3.1.2 Water-Soluble Constituents 52
 3.1.3 Other Constituents 54
3.2 Pharmacological Actions of Tanshinones .. 55
 3.2.1 Overview of Studies on Tanshinones 55
 3.2.2 Antibacterial Activity of Tanshinones 57
 3.2.3 Anti-inflammatory Activity of Tanshinones ... 59
3.2.4 Estrogen-like Activity of Tanshinones 59
3.2.5 Effect of Tanshinones on Diseases of Cardiovascular System. 59
3.3 Effects of Salvianolic Acid on Myocardial Ischemia-Reperfusion Injury and Cardiac Muscle Cell 60
3.3.1 Protective Effect of Salvianolic Acid A in Rat Myocardial I/R Injury 60
3.3.2 Effect of Salvianolic Acid A on In Vitro Cultured Myocardial Cells of Rats 61
3.4 Studies on Treating Nervous Degenerative Diseases with Salvianolic Acid B. 63
3.4.1 Effect of Salvianolic Acid B on Mitochondrial Injury and Nerve Cell Apoptosis Caused by Cerebral Ischemic Reperfusion 64
3.4.2 Inhibitory Effect of Salvianolic Acid B on Aβ1–40 Fibrogenesis and Its Protective Effect on Mitochondrial Damage and Cell Apoptosis of PC12 Cells Caused by Aβ1–40 Self-aggregation 65
3.4.3 Effect of Salvianolic Acid B on Neurogenesis in Rat Middle Cerebral Artery with Ischemic Reperfusion 66
3.4.4 Prospects of the Study on Salvianolic Acid B 70
3.5 Examples of the Effect of Salvianolic Acid on Focal Cerebral Ischemia 72
3.5.1 Objective .. 72
3.5.2 Experimental Materials 72
3.5.3 Experimental Method 72
3.5.4 Results .. 74
3.5.5 Conclusion ... 75

References .. 75

4 Effects of Danshen on the Cardiovascular System 79
Xiaoming Zhu, Lianhua Fang, Guanhua Du, Ran Zhang, Dongxia Wang, Jinglan Xu and Xiaoying Wang
4.1 The Protection of Danshen Over Heart 79
4.1.1 Improving the Blood Supply of Ischemic Cardiac Muscle 80
4.1.2 Improving the Energy Metabolism of Cardiac Muscle 81
4.1.3 Inhibition of Myocardial Hypertrophy 84
4.1.4 Anti-arrhythmia 86
4.1.5 Treatment of Viral Myocarditis 86
4.1.6 Summary ... 87
4.2 The Effects of Danshen on Atherosclerosis 87
4.2.1 Regulation of Lipid Metabolism 87
4.2.2 Prevention of Lipid Peroxidation. 90
4.2.3 Improvement in Functional Disturbance of Blood Vessel Endothelium. 93
4.2.4 The Inhibition of the Expression of Adhesive Molecules and the Antagonism of the Adhesion Between Cells. 95
4.2.5 Inhibition of Vascular Smooth Muscle Cell Proliferation. 97
4.2.6 Regulation of Antithrombotic System, Inhibition of Thrombosis. 99
4.2.7 Calcium Antagonism. 102
4.2.8 Treatment of Coronary Heart Disease and Heart-Stroke. 103
4.2.9 Summary. 104

4.3 The Effects of Danshen on Hypertension and Its Risk Factors. 104

4.4 The Effects on Blood Vessel Endothelium and Smooth Muscle. 108
4.4.1 Danshen’s Protective Effect on Vascular Endothelial Cells. 108
4.4.2 The Effects of Danshen on the Proliferation and Migration of VSMC. 112
4.4.3 Summary. 115

4.5 The Molecular Mechanism of Danshen’s Protection on Myocardial Ischemia-Reperfusion Injuries. 115
4.5.1 The Scavenging of Free Radicals and Prevention of Lipid Peroxidation. 115
4.5.2 Protection of the Cell Membrane. 117
4.5.3 The Prevention of Calcium Overload in the Cells. 119
4.5.4 The Effects of Danshen on Post-ischemia-Reperfusion “No-Reflow” 121
4.5.5 The Effects of Danshen on Myocardial Energy Metabolism. 122
4.5.6 The Effects of Danshen on the Apoptosis of Myocardial Cells and the Expression of Apoptosis Related Genes During Myocardial Ischemia-Reperfusion of Rats. 124

References. 124

5 Protective Effects of Danshen on Cerebral Vessels and the Nervous System. 129
Guangliang Han, Yuehua Wang, Guanhua Du, Hongmei Guang and Xinrui Cheng
5.1 Pharmacological Action of Danshen to Treat Cerebral Hemorrhage. 129
5.1.1 Overview of Cerebral Hemorrhage. 129
5.1.2 Pharmacological Action of Danshen. 130
5.1.3 The TCM Basis for Using Danshen to Treat Cerebral Hemorrhage 130
5.1.4 The Theoretical and Experimental Basis of Danshen’s Treatment of Cerebral Hemorrhage 130
5.1.5 Inseparable Relationship Between Cerebral Hemorrhage and Cerebral Ischemia 131
5.1.6 Decreasing Intracranial Pressure and Promoting the Absorption of Cephalophyma 132
5.1.7 Improving Hemorheological Characteristics 132
5.1.8 The Timing of Danshen Treatment for Cerebral Hemorrhage 133

5.2 The Effect of Danshen on Learning and Memory Abilities 134
5.2.1 The Effect of Danshen on Promoting the Ability of Learning and Memory 134
5.2.2 The Effect of Tanshinone on Alzheimer’s-Like Disease in Rats 135
5.2.3 Effect of Compound Danshen Preparations on Learning and Memory in Dementia Rats 140

5.3 Pharmacological Effects of Danshen for Treatment of Acute Ischemic Cerebrovascular Disease 144
5.3.1 Mechanism of Action of Danshen in Ischemic Cerebrovascular Disease 144
5.3.2 Summary and Prospect 153

5.4 Protective Effect of Danshen on Cerebral Hemorrhage-Reperfusion Injury 154
5.4.1 Improving Energy Metabolism 154
5.4.2 Clearing Free Radicals 155
5.4.3 Reducing Calcium Overload 156
5.4.4 Inhibiting the Release of Excitatory Amino Acids (EAA) 158
5.4.5 Regulating Immunity and Effects on Cytokines 159
5.4.6 Affecting the Expression of Heat Shock Protein 160
5.4.7 Improving Hemorheology and Microcirculation 161
5.4.8 Inhibiting Apoptosis 161
5.4.9 Improving Learning and Memory Disorders 162

References 164
6 Effect of Danshen on the Blood System and Microcirculatory Function
Jingyan Han, Zhixin Guo, Jinhua Wang, Li Zhang and Guanhua Du

6.1 The Effect of Danshen on Microcirculatory Dysfunction Caused by I/R
6.1.1 Danshen Improved the Microcirculatory Dysfunction Caused by I/R
6.1.2 The Improving Effect of Danshen on I/R-Related Injury

6.2 Effect of Danshen on Microcirculatory Dysfunction Caused by Endotoxins
6.2.1 Effect on Diameter of Small Artery and Vein
6.2.2 Effect on Erythrocyte Velocity of the Small Veins
6.2.3 Effect on the Adhesion of Leukocytes to the Small Veins
6.2.4 Inhibitive Effect on Peroxides
6.2.5 Protective Effect on Endovascular Cell Injury
6.2.6 Effect on Mast Cell Degranulation
6.2.7 Inhibitory Effect on Serum Albumin Leakage

6.3 Improving Effects of Danshen on Microcirculatory Dysfunction Caused by Other Factors
6.3.1 Improving Effect on Microcirculatory Dysfunction Caused by Photochemical Reactions
6.3.2 Improving Effect on Microcirculatory Dysfunction Caused by Noradrenaline
6.3.3 Improving Effect on Microcirculatory Dysfunction Caused by Scalding
6.3.4 Improving Effect on Microcirculatory Dysfunction Caused by Noise
6.3.5 Improving Effect on Microcirculatory Dysfunction Caused by Dextran Polymer
6.3.6 Summary

6.4 Research Progress in Danshen’s Effects on the Blood System, Microcirculation, and Hemorheology
6.4.1 Anticoagulation, Promoting Fibrinolysis, and Antithrombosis
6.4.2 Effect on Lipids
6.4.3 The Function of Danshen on Improving Microcirculation and Promoting Hemorheology
6.4.4 Summary

References
7 Preventive and Therapeutic Effects of Danshen on Digestive System Diseases
Yanqiao Zang, Ying Dai, Guanhua Du and Mei Gao

7.1 Pharmacological Effects of Danshen on Diseases of Stomach and Intestine
7.1.1 Pharmacological Effects on Peptic Ulcers
7.1.2 Pharmacological Effects of Danshen on Intestinal Tract
7.1.3 Clinical Application of Danshen in Intestinal Tract Diseases

7.2 Pharmacological Effects of Danshen on Acute Pancreatitis and Its Mechanisms
7.2.1 Improving Hemorrheology
7.2.2 Antiplatelet Aggregation
7.2.3 Against Angiotensin II (Ang II)
7.2.4 Regulating Endothelin Level
7.2.5 Scavenging Free Radicals
7.2.6 Inhibitory Effects on Ca²⁺
7.2.7 AntiBacterial and Anti-Inflammatory Effects
7.2.8 Inhibiting the Aggregation of White Blood Cells
7.2.9 Protective Effects on Extrapancreatic Organs

7.3 Progress in the Study on Pharmacological Effects and Relevant Mechanisms of Danshen in the Liver
7.3.1 Pharmacological Effects of Danshen on the Liver
7.3.2 Mechanisms of the Effects of Danshen’s Chemical Components on the Liver

References

8 The Effects of Danshen on Respiratory Diseases and Their Mechanisms
Guorong He, Guanhua Du and Danshen Zhang

8.1 The Main Pharmacological Effects of Danshen’s Treatment of Respiratory Diseases
8.1.1 Scavenging Free Radicals
8.1.2 Improving Hemorrheological Indices
8.1.3 Calcium Antagonist
8.1.4 Regulating the Secretion of Cell Factors [18, 19]
8.1.5 Antiendotoxin Actions [23–25]
8.1.6 Others

8.2 Protective Effects of Danshen on Acute Lung Injury Caused by Various Factors
8.2.1 Protective Effects of Danshen on Traumatic Lung Injury
8.2.2 Protective Actions of Danshen Against Infectious Toxic Lung Injury 223
8.2.3 Protective Effects of Danshen Against Chemical Lung Injury 224
8.2.4 Protective Effect of Danshen on Mixed Lung Injury 228
References 231

9 The Effects of Danshen on Kidney Diseases 233
Bin Zhang, Tiantai Zhang and Guanhua Du
9.1 Preventive and Curative Effects of Danshen on Renal Inflammatory Diseases 233
9.1.1 Definition of Renal Inflammatory Diseases and Pathogenesis 233
9.1.2 Preventive and Curative Effects of Danshen on Renal Inflammatory Diseases 234
9.2 Preventive and Curative Effects of Danshen on Renal Failure 234
9.2.1 Classification and Clinical Manifestation of Renal Failure 234
9.2.2 Protective Effects of Danshen Against Renal Failure 235
9.3 Protective Effects of Danshen on the Ischemia and Ischemia-Reperfusion Injury in Kidneys 235
9.3.1 Antioxidation 235
9.3.2 Affecting Inflammatory Factors 236
9.3.3 Effects on Nitric Oxide Synthase 236
9.4 Preventive and Curative Effects of Danshen Against the Impairment of Renal Functions Caused by Toxic Substances 237
9.5 Preventive and Curative Effects of Danshen Against the Impairment of Renal Function Caused by Renal Interstitial Substance Injury 237
References 238

10 The Anti-tumor Effects of Danshen 239
Xiuping Chen, Tiantai Zhang and Guanhua Du
10.1 Application of Danshen in Clinical Tumor Therapy 239
10.1.1 Alleviating the Pain of Malignant Tumors 239
10.1.2 Enhancing the Therapeutic Effects of Radiotherapy 239
10.1.3 Prevention and Treatment of Radiotherapy and Chemotherapy-Induced Myelosuppression 240
10.2 Actions of Danshen on Malignant Tumors and Possible Mechanisms 240
10.2.1 Effects of Danshen on Tumorigenesis and Relevant Mechanisms 240
10.2.2 Effects on the Development of Tumors 241
11 Studies on the Antibacterial and Anti-inflammatory Actions of Danshen and Its Effects on the Immune System

Li Zhang and Guanhua Du

11.1 Pharmacological Effects of Danshen in Anti-inflammation and Immunity

11.1.1 Effects on Immunocyte Function

11.1.2 Effects on Cytokines

11.2 The Pharmacological Effects of Danshen in Antibacterial Activity

11.2.1 Effects on Staphylococcus Aureus

11.2.2 Effects on Helicobacter Pylori

11.2.3 Others

References

Part II Quality Control

12 Qualitative Research

Guoqiang Fan, Guoqing Wu, Xiaqian Zhang, Xian Zhang, Rixin Liang, Manling Li, Fenglan Cao, Ming Zhu, Zhangzhao Jin, Bilian Chen, Linke Ma, Shen Ji, Qing Gong, Zhengliang Ye and Jun Gao

12.1 Identification of Medicinal Danshen

12.1.1 Morphological Identification

12.1.2 Microscopic Identification

12.1.3 Physical and Chemical Identification

12.1.4 Identification by Thin-Layer Chromatography (TLC)

12.1.5 Spectral Identification

12.2 Identification of Danshen Preparations

12.2.1 Qualitative Identification of Dantonic™

12.2.2 Qualitative Identification of Danshen Injection

12.2.3 Qualitative Identification of Compound Danshen Tablet and Danshen Tablet by TLC

12.2.4 Qualitative Identification of Xiangdan Injection

12.2.5 Identification of Guanxinning Injection by TLC

12.2.6 Identification of Danshen Total Phenolic Acid Injection (Lypholized)

References
13 General Quality Control Methods

Xiaojian Zhang, Guoqing Wu, Rixin Liang, Manling Li, Xiaoqian Zhang and Shen Ji

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Determination of Water Content</td>
<td>291</td>
</tr>
<tr>
<td>13.2 Determination of Ash Content</td>
<td>291</td>
</tr>
<tr>
<td>13.2.1 Total Ash</td>
<td>291</td>
</tr>
<tr>
<td>13.2.2 Acid-Insoluble Ash</td>
<td>291</td>
</tr>
<tr>
<td>13.3 Determination of Extractives</td>
<td>292</td>
</tr>
<tr>
<td>13.3.1 Water-Soluble Extractives</td>
<td>292</td>
</tr>
<tr>
<td>13.3.2 Alcohol-Soluble Extractives</td>
<td>293</td>
</tr>
<tr>
<td>13.4 Heavy Metals</td>
<td>294</td>
</tr>
<tr>
<td>13.4.1 Overview</td>
<td>294</td>
</tr>
<tr>
<td>13.4.2 Detection and Determination of Heavy Metals</td>
<td>295</td>
</tr>
<tr>
<td>13.4.3 Detection of Heavy Metals in Danshen</td>
<td>295</td>
</tr>
<tr>
<td>13.4.4 Method Validation</td>
<td>296</td>
</tr>
<tr>
<td>13.5 Pesticide Residues</td>
<td>297</td>
</tr>
<tr>
<td>13.5.1 Overview</td>
<td>297</td>
</tr>
<tr>
<td>13.5.2 Organochlorine Pesticide Residues</td>
<td>298</td>
</tr>
<tr>
<td>13.5.3 Organophosphorus Pesticide Residues</td>
<td>299</td>
</tr>
<tr>
<td>13.5.4 Pyrethroid Pesticide Residues</td>
<td>301</td>
</tr>
<tr>
<td>13.6 Aflatoxin</td>
<td>302</td>
</tr>
<tr>
<td>13.6.1 Overview</td>
<td>302</td>
</tr>
<tr>
<td>13.6.2 Determination of Aflatoxin</td>
<td>303</td>
</tr>
<tr>
<td>13.6.3 Assay Results</td>
<td>303</td>
</tr>
</tbody>
</table>

References. 305

14 Content Determination

Wanying Wu, Rongxia Liu, Dean Guo, Xiaoqian Zhang, Guoqing Wu, Rixin Liang, Manling Li, Fengnan Cao, Ming Zu, Zhangzhao Jin, Bilian Cheng, Linke Ma, Qing Gong, Shen Ji, Ming Zhu, Zhengliang Ye, Jun Gao and Aihua Liu

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 Determination of Salvianolic Acid Content</td>
<td>307</td>
</tr>
<tr>
<td>14.1.1 Determination of Total Phenolic Acid Content in Compound Danshen Tablet</td>
<td>307</td>
</tr>
<tr>
<td>14.1.2 Determination of Salvianolic Acid Content in Danshen Herb.</td>
<td>309</td>
</tr>
<tr>
<td>14.1.3 Determination of the Water-Soluble Constituents in Dantonic™</td>
<td>314</td>
</tr>
<tr>
<td>14.1.4 Determination of Salvianolic Acids in Danshen Injection</td>
<td>318</td>
</tr>
<tr>
<td>14.1.5 Determination of the Phenolic Components in Compound Danshen Tablet and Danshen Tablet</td>
<td>326</td>
</tr>
</tbody>
</table>
14.1.6 Determination of Salvianolic Acids in Xiangdan Injection 329

14.1.7 Determination of Salvianolic Acids in Lyophilized Danshen Total Phenolic Acid Injection 334

14.1.8 Determination of the 6 Major Phenolic Acids in Danshen and Its Preparations 338

14.2 Determination of Tanshinone Contents 347

14.2.1 Determination of Tanshinones in Danshen 347

14.2.2 Determination of 4 Tanshinones in Danshen and Danshen Preparations 348

References 355

15 Fingerprint Study 357

Dean Guo, Jinlan Zhang, Ming Zhu, Xiaohui Fan, Yongjiang Wu, Aihua Liu, Min Yang and Haibing Qu

15.1 Study of Chromatographic Fingerprinting 357

15.1.1 Study of the Chromatographic Fingerprinting of Salvianolic Acids 357

15.1.2 Chromatographic Fingerprints of Diterpene Quinone Constituents 425

15.2 Study on Near Infrared Spectral Fingerprint 446

15.2.1 Introduction to Near Infrared Spectroscopy 446

15.2.2 The Near Infrared Spectral Fingerprints of Danshen 447

15.2.3 NIR Spectral Fingerprint Based on Wavelet Transform 453

References 457

16 Quality Control of Dantonic™ 459

Shunhang Liu, Jun Gao, Yan Liu, Shunnan Zhang, Haiou Dong, Xueming Zhang, Jianping Lin, Junquan Wang, Xuesong Liu, Haibin Qu and Xiaohui Fan

16.1 Quality Control of Raw Material Medicinals 459

16.1.1 Overview 459

16.1.2 Summary 462

16.2 Quality Control in the Extraction Process 462

16.2.1 Strict Quality Standard for Crude Drug Materials 463

16.2.2 Advanced Techniques and Equipment 463

16.2.3 Quality Control of Extraction Process: Implementation of CGEP Management 463

16.2.4 High Quality Standards for Extractum 464
16.3 Quality Control in the Preparation Process 465
16.3.1 Overview ... 465
16.3.2 Quality Control of the Production Process of Dantonic™ ... 468
16.3.3 The Application of Near-Infrared Spectroscopy in the Quality Control of Dantonic™ Production ... 473
16.4 Dantonic™ Quality Control Technique Based on Multivariate HPLC Fingerprinting 494
16.4.1 Acquisition of Multiple Chromatographic Fingerprints of Dantonic™ 494
16.4.2 Authentication of Dantonic™ Multiple Chromatographic Fingerprints 495
16.4.3 Validation of Dantonic™ Multiple Chromatographic Fingerprints 496
16.4.4 Multiple Chromatographic Fingerprinting Calculation Based on Information Fusion 497
16.5 Method for Determining the Quality Uniformity of Compound Danshen Extract 502
16.5.1 Mixing Uniformity Method 502
16.5.2 Mixing Uniformity Method Based on Multiple Fingerprinting ... 504
16.5.3 Experiment Part .. 504
16.5.4 Results and Discussion .. 505
References ... 509

17 In Vivo Metabolism of Danshen and Its Preparations 511
Aihua Liu, Dean Guo, Jinlan Zhang and Jianghao Sun
17.1 Pharmacokinetics and In Vivo Metabolism of Total Salvianolic Acids ... 511
17.1.1 Pharmacokinetics Study of Total Salvianolic Acids ... 511
17.1.2 The Metabolites of Total Salvianolic Acids from Danshen in Rats 514
17.2 Pharmacokinetics and In Vivo Metabolism of Danshen Preparations .. 520
17.2.1 Preliminary Pharmacokinetic Study of Compound Danshen Tablet 520
17.2.2 Metabolic Fingerprinting of Danshen Injection .. 525
17.2.3 The Metabolites of Danshen Injection in Rats After Intravenous Administration 528
17.3 The Metabolism of Monomer Tanshinone Components .. 530
17.3.1 In Vivo Pharmacokinetics of Tanshinone II_A in Rats ... 530
17.3.2 The Metabolites in Rat Bile After Intravenous Administration of 7 Tanshinones 549
Dan Shen (Salvia miltiorrhiza) in Medicine
Volume 2. Pharmacology and Quality Control
Yan, X. (Ed.)
2015, XXXVI, 592 p. 254 illus., 65 illus. in color.,
Hardcover
ISBN: 978-94-017-9462-6