Contents

1 **Introduction to Spectral/Pseudospectral Methods** 1
1.1 Introduction ... 1
1.2 Spectral and Pseudospectral Methods 4
1.2.1 The Spectral Space Representation 5
1.2.2 The Physical Space Representation 8
1.2.3 A Hilbert Space 11
1.2.4 Hermitian and Self-adjoint Operators:
 The Sturm-Liouville Problem 13
1.2.5 Rayleigh-Ritz Variational Theorem 15
1.3 An Overview of Spectral Methods 16
1.4 The Development of Pseudospectral Methods in Chemistry
 and Physics: An Overview of the Book 18
References .. 22

2 **Polynomial Basis Functions and Quadratures** 29
2.1 Introduction .. 29
2.2 Gram-Schmidt Orthogonalization and Three Term Recurrence
 Relations .. 33
2.2.1 Legendre and Hermite Polynomials 36
2.2.2 The Rys Polynomials 41
2.3 Numerical Integration Algorithms 44
2.3.1 Polynomial and Lagrange Interpolation 44
2.3.2 Trapezoidal and Simpson’s Integration Rules 46
2.3.3 Newton-Cotes Integration Rules; Error Analysis 48
2.3.4 Gaussian Quadrature 51
2.3.5 The Christoffel-Darboux Relation and Quadrature
 Weights ... 52
2.3.6 The Gautschi-Stieltjes Procedure, the Jacobi Matrix ... 54
2.4 The Classical Polynomials; Recurrence Coefficients and Quadratures

2.4.1 Legendre Polynomials
2.4.2 Half Range Legendre Polynomials
2.4.3 Associated Legendre Polynomials
2.4.4 The Spherical Harmonics
2.4.5 Associated Laguerre and Sonine Polynomials
2.4.6 Quantum Mechanics of the Hydrogen Atom
2.4.7 Hermite Polynomials
2.4.8 Gegenbauer Polynomials
2.4.9 Chebyshev Polynomials; Fourier Cosine Basis Functions
2.4.10 Fejér Quadratures
2.4.11 The Clenshaw-Curtis Quadrature
2.4.12 Gauss-Lobatto and Gauss-Radau Quadrature Algorithms

2.5 Nonclassical Basis Functions

2.5.1 Maxwell Polynomials
2.5.2 The Bimodal Polynomials
2.5.3 Rys Polynomials; Full-Range and Half-Range
2.5.4 Additional Examples of Nonclassical Quadratures

2.6 Sinc Interpolation, Cubic B-Splines and Radial Basis Functions

2.6.1 Sinc Interpolation
2.6.2 Cubic B-Splines
2.6.3 B-Splines
2.6.4 Radial Basis Functions

2.7 Moment Methods for Orthogonal Polynomials and the Stieltjes Moment Problem

2.8 Two Dimensional Integrals and Cubatures

References

3 Numerical Evaluation of Integrals and Derivatives

3.1 Numerical Evaluation of Integrals
3.2 Some General Principles for the Numerical Evaluation of Integrals
3.3 Scaling Quadrature Points and Weights
3.4 Integrals in Density Functional Theory
3.4.1 Mapping the Semi-infinite Interval $r \in [0, \infty)$ to $x \in [-1, 1]$
3.4.2 Radial Integrals in Density Functional Theory
3.5 Chemical and Nuclear Reaction Rate Coefficients 122
 3.5.1 Equilibrium Rate Coefficient for Chemical
 Reactions ... 122
 3.5.2 Rate Coefficients for Fusion Reactions;
 Non-resonant Cross Sections 125
3.6 Integrals in Collision Theory and Kinetic Theory 129
 3.6.1 The Reactive and Elastic Collision Frequencies 130
 3.6.2 Integration Over a Cusp; the Boltzmann Equation 134
 3.6.3 Viscosity of a Simple Gas 140
 3.6.4 Eigenvalues of the Boltzmann Collision Operator
 for Maxwell Molecules 142
 3.6.5 The JWKB Phase Shifts and Quantum Elastic
 Cross Sections .. 144
3.7 The Calculation of Matrix Elements of Multiplicative
 Operators ... 150
 3.7.1 Matrix Representation of the Collision Frequency
 in Laguerre and Maxwell Polynomials 154
 3.7.2 Matrix Representation of the Harmonic Oscillator
 Potential in Hermite Polynomials 158
3.8 Challenging Integrals .. 161
 3.8.1 Molecular and Atomic Electronic Structure;
 Electron Pair Repulsion Integrals 161
 3.8.2 Relaxation Times for $^3\text{He}-^3\text{He}$ Spin Exchange
 Collisions—Oscillatory Integrands 166
 3.8.3 The SIAM 100-Digit Challenge; a “Twisted Tail”
 Integral .. 165
3.9 Numerical Evaluation of Derivatives 167
 3.9.1 Finite Difference Formulas for Derivatives 168
 3.9.2 Interpolation and Differentiation 169
 3.9.3 Sturm-Liouville Eigenvalues Problems 174
 3.9.4 Discrete Singular Convolution; Whittaker’s Sinc
 Interpolation .. 176
References .. 177

4 Representation of Functions in Basis Sets 187
 4.1 Introduction .. 187
 4.2 Approximation of Functions in a Basis Set;
 The Least Squares Error 189
 4.3 Expansions in Hermite Polynomials; Spectral Convergence 191
 4.3.1 An Asymmetric Hermite Expansion 192
 4.3.2 A Symmetric Hermite Expansion; Spectral
 Convergence 196
 4.3.3 Expansion of $\sin(x)$ in Hermite Polynomials 199
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>Expansion of a Maxwellian with Chebyshev Polynomials</td>
<td>201</td>
</tr>
<tr>
<td>4.5</td>
<td>Expansion in Laguerre Polynomials</td>
<td>202</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Asymmetric Laguerre</td>
<td>202</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Expansion of a Kappa Distribution in Laguerre Polynomials</td>
<td>205</td>
</tr>
<tr>
<td>4.6</td>
<td>Representation of Functions in Periodic Fourier Series</td>
<td>208</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Fourier Series</td>
<td>209</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Fourier Series in Complex Basis Functions</td>
<td>212</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Fourier Interpolation and Discrete Fourier Transforms</td>
<td>213</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Fourier Transforms</td>
<td>215</td>
</tr>
<tr>
<td>4.6.5</td>
<td>The Solution of the Diffusion Equation with Fourier Transforms</td>
<td>217</td>
</tr>
<tr>
<td>4.6.6</td>
<td>Construction of a Quantum Wave Packet</td>
<td>219</td>
</tr>
<tr>
<td>4.6.7</td>
<td>Fourier Transform Analysis of Time Series and Fourier Transform Spectroscopy</td>
<td>222</td>
</tr>
<tr>
<td>4.7</td>
<td>Gibbs Phenomenon</td>
<td>223</td>
</tr>
<tr>
<td>4.7.1</td>
<td>The Direct Method</td>
<td>225</td>
</tr>
<tr>
<td>4.7.2</td>
<td>The Inverse Method; Odd Functions $f(-x) = -f(x)$</td>
<td>227</td>
</tr>
<tr>
<td>4.7.3</td>
<td>The Inverse Method Is Exact for Polynomials</td>
<td>229</td>
</tr>
<tr>
<td>4.7.4</td>
<td>Numerical Comparisons</td>
<td>231</td>
</tr>
<tr>
<td>4.7.5</td>
<td>Minimizing the Inverse Method Round-Off Errors</td>
<td>235</td>
</tr>
<tr>
<td>4.7.6</td>
<td>Local Reconstruction and Image Resolution</td>
<td>238</td>
</tr>
<tr>
<td>4.8</td>
<td>The Runge Phenomenon</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>240</td>
</tr>
<tr>
<td>5</td>
<td>Integral Equations in the Kinetic Theory of Gases and Related Topics.</td>
<td>247</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>247</td>
</tr>
<tr>
<td>5.2</td>
<td>Classes of Integral Equations and the Use of Quadratures</td>
<td>249</td>
</tr>
<tr>
<td>5.3</td>
<td>Radiative Transfer and Neutron Transport Theory</td>
<td>252</td>
</tr>
<tr>
<td>5.4</td>
<td>The Boltzmann Equation and Transport Theory</td>
<td>257</td>
</tr>
<tr>
<td>5.4.1</td>
<td>The Chapman-Enskog Method of Solution of the Boltzmann Equation for Transport Coefficients</td>
<td>258</td>
</tr>
<tr>
<td>5.4.2</td>
<td>The Linearized Collision Operator, J, in the Boltzmann Equation</td>
<td>263</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Matrix Representation of the Spherical Component ($\ell = 0$) of J in Sonine-Laguerre Basis Functions</td>
<td>265</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Spectral Solution of the Boltzmann Equation for the Departure from Maxwellian for an Elementary Reaction in a Spatially Uniform System</td>
<td>268</td>
</tr>
</tbody>
</table>
5.4.5 Pseudospectral Solution of the Boltzmann Equation for Shear Viscosity with the Maxwell Quadrature 274

5.5 Spectral Theory for the Linearized Boltzmann Collision Operator 277
5.5.1 Spectral Calculation of the Eigenvalue Spectrum of J 278
5.5.2 Pseudospectral Calculation of the Eigenvalue Spectrum of J 280

5.6 Relaxation to Equilibrium in Binary Gas Mixtures 284
5.6.1 Spectral Calculation of the Eigenvalue Spectrum of the Linear Collision Operator, L, for a Binary Gas 285
5.6.2 Pseudospectral Calculation of Eigenvalue Spectrum of the Linear Collision Operator, L, for a Binary Gas 286
5.6.3 Spectral Method of Solution of the Linear Boltzmann Equation with Quantum Cross Sections; Relaxation to Equilibrium and the Kullback-Leibler Entropy 290

5.7 Two Dimensional Anisotropic Distributions 296
5.7.1 Pseudospectral/Spectral Solution of the Boltzmann Equation; Relaxation of Anisotropic Distributions in a Binary Gas 296
5.7.2 A Spectral Method of Solution of the Milne Problem 301
5.7.3 A Mixed Spectral/Pseudospectral Solution of the Boltzmann Equation for the Escape of Light Atoms from a Planetary Atmosphere 308
5.7.4 Electric Field Induced Ion Drift in Buffer Gases; Applications to Ionospheric and Space Physics 312

5.8 The Nonlinear Isotropic Boltzmann Equation 315
5.8.1 Finite Difference Method of Solution of the Nonlinear Boltzmann Equation; Approach to Equilibrium 316
5.8.2 Finite Difference Discretization of the Nonlinear Boltzmann Equation 317
5.8.3 Time Dependent Solutions 319

References 321
6 Spectral and Pseudospectral Methods of Solution of the Fokker-Planck and Schrödinger Equations 331
6.1 The Fokker-Planck Equation in Chemistry, Physics, Astrophysics and Other Fields 331
 6.1.1 From the Langevin Equation to the Fokker-Planck Equation; Brownian Motion 333
 6.1.2 Spectral Solution of the Ornstein-Uhlenbeck Fokker-Planck Equation 335
 6.1.3 Rayleigh and Lorentz Fokker-Planck Equations from the Boltzmann Equation; The Kramers-Moyal Expansion 337
 6.1.4 Spectral Solution of the Rayleigh Fokker-Planck Equation 338
6.2 Numerical Methods for the Solution of the Fokker-Planck Equation .. 340
 6.2.1 Spectral Methods with Nonclassical Basis Functions .. 340
 6.2.2 Pseudospectral Methods with Nonclassical Quadratures 342
 6.2.3 The Chang-Cooper Finite Difference Method of Solution of the Fokker-Planck Equation 344
6.3 Electron Thermalization; The Lorentz Fokker-Planck Equation Revisited 346
 6.3.1 Hard Sphere Cross Section and Zero Electric Field, \(E = 0 \) .. 349
 6.3.2 Transformation of the Fokker-Planck Eigenvalue Problem to a Schrödinger Equation; Supersymmetric Quantum Mechanics ... 351
 6.3.3 Pseudospectral Representation of the Schrödinger Equation; Supersymmetric Quantum Mechanics 354
6.4 Relaxation and Wave-Particle Heating in Space Plasmas .. 355
 6.4.1 Pseudospectral Solution of the Coulomb Fokker-Planck and Associated Schrödinger Equations; The Approach to Equilibrium and the Continuous Spectrum ... 356
 6.4.2 Fokker-Planck Equation for Wave Particle Heating of Ions; Kappa Distributions, and Tsallis Nonextensive Entropy ... 361
6.5 Fokker-Planck or Smoluchowski Equation for Bistable Potentials .. 365
6.6 Kramers Equation and Nonequilibrium Chemical Kinetics; A Spectral Solution 373
6.7 Sturm-Liouville Problems and the Schrödinger Equation .. 381
 6.7.1 Classical Polynomials as Eigenfunctions of the Sturm-Liouville and Schrödinger Equations 382
Spectral Methods in Chemistry and Physics
Applications to Kinetic Theory and Quantum Mechanics
Shizgal, B.
2015, XVII, 415 p. 102 illus., 2 illus. in color., Hardcover
ISBN: 978-94-017-9453-4