Contents

1 Introduction ... 1
 1.1 Plant Innate Immunity .. 2
 1.2 Salicylic Acid Signaling .. 2
 1.3 Jasmonate Signaling ... 4
 1.4 Ethylene Signaling .. 5
 1.5 Abscisic Acid Signaling .. 6
 1.6 Auxin Signaling .. 7
 1.7 Cytokinins ... 8
 1.8 Gibberellins .. 8
 1.9 Brassinosteroids .. 9
 1.10 Plant Hormone Signaling Network ... 10
 1.11 Can Molecular Manipulation of Plant Hormone Signaling Network Help the Plant to Win the War Against Pathogens? 12
References .. 13

2 Salicylic Acid Signaling in Plant Innate Immunity .. 27
 2.1 Salicylic Acid as an Endogenous Immune Signal in Plants 29
 2.2 Biosynthesis of Salicylic Acid in Plants ... 29
 2.2.1 Phenylalanine Pathway ... 29
 2.2.2 Isochorismate Pathway ... 31
 2.2.3 Role of Regulatory Proteins (EDS1, EDS4, PAD4, EDS5, SID2) in Salicylic Acid Biosynthesis ... 31
 2.2.4 An RNA-Binding Protein (RBP) May Be Involved in SA Biosynthesis Pathway ... 34
 2.2.5 GH3.5 Is Involved in Salicylic Acid Biosynthesis 34
 2.2.6 Role of CDR1 Gene in SA Biosynthesis ... 35
 2.2.7 Role of FMO1 Gene in SA Biosynthesis Pathway 36
 2.2.8 Cytokinin May Be Involved in Activation of Salicylic Acid Biosynthesis ... 36
 2.2.9 Some Transcription Factors May Be Involved in Accumulation of Salicylic Acid ... 36
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>Upstream of Salicylic Acid Signaling System</td>
<td>39</td>
</tr>
<tr>
<td>2.3.1</td>
<td>G-Proteins Trigger Salicylic Acid Biosynthesis in SA Signaling System</td>
<td>39</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Calcium Signaling May Act Upstream of Salicylic Acid Accumulation</td>
<td>40</td>
</tr>
<tr>
<td>2.3.3</td>
<td>MAP Kinases May Act Upstream of Salicylic Acid Accumulation</td>
<td>43</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Reactive Oxygen Species May Act Upstream of Salicylic Acid Accumulation</td>
<td>44</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Nitric Oxide May Act Upstream of Salicylic Acid Accumulation</td>
<td>45</td>
</tr>
<tr>
<td>2.4</td>
<td>Downstream Events in Salicylic Acid Signaling</td>
<td>46</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Generation of Salicylic Acid Conjugates</td>
<td>46</td>
</tr>
<tr>
<td>2.4.2</td>
<td>ROS Signaling System May Act Downstream of SA Accumulation</td>
<td>47</td>
</tr>
<tr>
<td>2.4.3</td>
<td>NO May Act Downstream of SA Accumulation</td>
<td>48</td>
</tr>
<tr>
<td>2.4.4</td>
<td>MAPK Signaling Cascade May Act Downstream in SA Signaling System</td>
<td>48</td>
</tr>
<tr>
<td>2.5</td>
<td>SA Signaling Induces Increased Expression of Transcription Factors</td>
<td>49</td>
</tr>
<tr>
<td>2.5.1</td>
<td>SA Induces WRKY Transcription Factors</td>
<td>49</td>
</tr>
<tr>
<td>2.5.2</td>
<td>SA Induces ERF Transcription Factors</td>
<td>51</td>
</tr>
<tr>
<td>2.6</td>
<td>NPR1 Is Master Regulator of SA Signaling</td>
<td>52</td>
</tr>
<tr>
<td>2.6.1</td>
<td>NPR1 Acts Downstream of SA Signal</td>
<td>52</td>
</tr>
<tr>
<td>2.6.2</td>
<td>SA Controls Nuclear Translocation of NPR1</td>
<td>52</td>
</tr>
<tr>
<td>2.6.3</td>
<td>SA Modulates Proteasome-Mediated Degradation of NPR1</td>
<td>53</td>
</tr>
<tr>
<td>2.6.4</td>
<td>NPR1 Interacting Proteins</td>
<td>55</td>
</tr>
<tr>
<td>2.6.5</td>
<td>SA-Dependent NPR1-Activated Transcription Factors</td>
<td>55</td>
</tr>
<tr>
<td>2.6.6</td>
<td>SA-Induced Expression of PR Genes, Independent of NPR1</td>
<td>57</td>
</tr>
<tr>
<td>2.7</td>
<td>Role of SUMO in SA Signaling System</td>
<td>57</td>
</tr>
<tr>
<td>2.8</td>
<td>SA Induces Transcription of Various Defense Genes</td>
<td>58</td>
</tr>
<tr>
<td>2.9</td>
<td>Role of SA Signaling in Stomatal Closure-Related Immune Responses</td>
<td>58</td>
</tr>
<tr>
<td>2.10</td>
<td>SA Induces Resistance Against Viruses by Modulating AOX-Mediated</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Alternative Respiratory Pathway</td>
<td></td>
</tr>
<tr>
<td>2.11</td>
<td>SA Triggers Small RNA-Directed RNA Silencing</td>
<td>60</td>
</tr>
<tr>
<td>2.12</td>
<td>Enhancement of Small RNA-Directed RNA Silencing by Salicylate Signaling System</td>
<td>62</td>
</tr>
<tr>
<td>2.13</td>
<td>Interplay Between SA-Induced AOX-Mediated Redox Signaling and SA-Induced Small RNA-Directed RNA Silencing</td>
<td>62</td>
</tr>
<tr>
<td>2.14</td>
<td>Salicylic Acid Signaling Is Involved in Induction of Systemic Acquired Resistance</td>
<td>64</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.15</td>
<td>Mobile Long-Distance Signals for Induction of Systemic Acquired Resistance</td>
<td></td>
</tr>
<tr>
<td>2.15.1</td>
<td>Search for Long-Distance Mobile Signal</td>
<td>65</td>
</tr>
<tr>
<td>2.15.2</td>
<td>Methyl Salicylate May Be a Mobile Signal</td>
<td>65</td>
</tr>
<tr>
<td>2.15.3</td>
<td>DIR1 and Glycerol-3-Phosphate-Dependent Factor Mobile Signal Complex</td>
<td>68</td>
</tr>
<tr>
<td>2.15.4</td>
<td>Azelaic Acid May Be a Mobile Signal</td>
<td>70</td>
</tr>
<tr>
<td>2.15.5</td>
<td>Dehydroabietinal as a Mobile Signal</td>
<td>70</td>
</tr>
<tr>
<td>2.15.6</td>
<td>Pimelic Acid as an SAR Long-Distance Signal</td>
<td>71</td>
</tr>
<tr>
<td>2.16</td>
<td>Role of Mediator Complex in SA-Mediated Systemic Acquired Resistance</td>
<td>73</td>
</tr>
<tr>
<td>2.17</td>
<td>Salicylic Acid Triggers Priming and Induces Systemic Acquired Resistance</td>
<td>75</td>
</tr>
<tr>
<td>2.17.1</td>
<td>What Is SA-Triggered Priming?</td>
<td>75</td>
</tr>
<tr>
<td>2.17.2</td>
<td>Accumulation of Dormant MAPKs May Be Involved in SA-Triggered Priming</td>
<td>76</td>
</tr>
<tr>
<td>2.17.3</td>
<td>Histone Modifications May Be Involved in Gene Priming in SA-Induced SAR</td>
<td>77</td>
</tr>
<tr>
<td>2.17.4</td>
<td>NPR1 May Be Involved in Chromatin Modification-Induced Priming</td>
<td>78</td>
</tr>
<tr>
<td>2.17.5</td>
<td>Histone Replacement May Be Instrumental for Priming of SA-Responsive Loci</td>
<td>79</td>
</tr>
<tr>
<td>2.18</td>
<td>Next-Generation Systemic Acquired Resistance</td>
<td>80</td>
</tr>
<tr>
<td>2.19</td>
<td>Crosstalk Between Salicylate and Jasmonate Signaling Systems</td>
<td>81</td>
</tr>
<tr>
<td>2.19.1</td>
<td>Antagonism Between SA and JA Signaling Systems</td>
<td>81</td>
</tr>
<tr>
<td>2.19.2</td>
<td>SA May Block JA Biosynthesis</td>
<td>81</td>
</tr>
<tr>
<td>2.19.3</td>
<td>SA May Suppress JA-Responsive Gene Expression</td>
<td>82</td>
</tr>
<tr>
<td>2.19.4</td>
<td>NPR1 in the Cytosol Modulates Crosstalk Between SA and JA Signaling Systems</td>
<td>83</td>
</tr>
<tr>
<td>2.19.5</td>
<td>Role of Glutaredoxin and TGA Transcription Factors in the SA–JA Crosstalk</td>
<td>85</td>
</tr>
<tr>
<td>2.19.6</td>
<td>Role of MAP Kinase 4 (MPK4) in SA and JA Crosstalk</td>
<td>86</td>
</tr>
<tr>
<td>2.19.7</td>
<td>SA May Suppress JA Signaling by Targeting GCC-Box Motifs in JA-Responsive Promoters</td>
<td>87</td>
</tr>
<tr>
<td>2.19.8</td>
<td>JA May Inhibit SA Signaling</td>
<td>88</td>
</tr>
<tr>
<td>2.19.9</td>
<td>Synergism Between SA and JA Signaling Pathways</td>
<td>88</td>
</tr>
<tr>
<td>2.20</td>
<td>Crosstalk Between SA and ET Signaling Systems</td>
<td>89</td>
</tr>
<tr>
<td>2.21</td>
<td>Crosstalk Between SA and ABA Signaling Systems</td>
<td>89</td>
</tr>
<tr>
<td>2.22</td>
<td>Crosstalk Between SA and Auxin Signaling Systems</td>
<td>89</td>
</tr>
<tr>
<td>2.23</td>
<td>Negative Regulation of Salicylate-Mediated Immunity by Brassinosteroid Signaling</td>
<td>90</td>
</tr>
<tr>
<td>2.24</td>
<td>SA Signaling System May Induce Resistance Against a Wide Range of Pathogens</td>
<td>90</td>
</tr>
</tbody>
</table>
2.24.1 SA Signaling System Is Involved in Conferring Fungal and Oomycete Disease Resistance 90
2.24.2 SA Signaling System Is Involved in Conferring Bacterial Disease Resistance .. 91
2.24.3 SA Signaling System Is Involved in Conferring Virus Disease Resistance .. 93
2.25 Pathogens May Suppress SA Signaling System to Cause Disease .. 94
2.25.1 Pathogens May Secrete Effectors to Suppress SA Signaling System .. 94
2.25.2 Pathogen Produces Toxin and Suppresses SA Signaling System to Promote Disease Development 94
2.25.3 Pathogen Manipulates the Antagonistic Effect Between SA and JA Signaling Systems to Promote Disease Development .. 96

References .. 96

3 Jasmonate Signaling System in Plant Innate Immunity 123
 3.1 Jasmonate Signaling System Is a Key Component in PAMP-Triggered Innate Immunity .. 124
 3.2 Biosynthesis of Jasmonates .. 125
 3.3 Jasmonate Biosynthesis Intermediate OPDA in Defense Signaling ... 126
 3.4 JA Metabolites Involved in Defense Signaling .. 126
 3.4.1 Methyl Jasmonate .. 126
 3.4.2 Jasmonoyl-Isoleucine ... 128
 3.5 Upstream of JA Biosynthesis .. 129
 3.5.1 PAMP Triggers Enhanced Biosynthesis and Accumulation of JA 129
 3.5.2 G-Proteins in the Induction of JA Biosynthesis .. 130
 3.5.3 G-Proteins-Activated Polyamine Synthesis in Triggering JA Biosynthesis .. 131
 3.5.4 Calcium Signature Triggers JA Biosynthesis .. 134
 3.5.5 Role of ROS in JA Biosynthesis Pathway .. 135
 3.5.6 Role of NO in JA Biosynthesis Pathway ... 135
 3.5.7 Mitogen-Activated Protein Kinases Functioning Upstream in JA Biosynthesis Pathway .. 137
 3.5.8 Systemin Triggers JA Biosynthesis in Tomato .. 138
 3.6 Jasmonate Receptor Complex in JA Signal Perception 139
 3.6.1 COI1, an F-Box Protein, Is a Jasmonate Receptor .. 139
 3.6.2 COI1–JAZ Receptor Complex ... 140
 3.6.3 InsP5 Potentiates JA Perception by COI1–JAZ1 Complex 140
 3.6.4 JA-Ile Promotes Physical Interaction Between JAZ1 and COI1 140
3.7 JA Signaling Pathway

3.7.1 JA Proteins Suppress JA Signaling

3.7.2 Role of COI1 Protein in the Degradation of JA Proteins by E3 Ubiquitin Ligase

3.7.3 Role of JA-Ile in the JAZ Degradation by 26S Proteasome

3.7.4 MYC2, MYC3, and MYC4 Transcription Factors Regulate JA-Responsive Gene Expression

3.8 Mediator Complex Regulates Transcription of JA-Responsive Genes by Interacting with Transcription Factors

3.9 MAP Kinases May Regulate the Downstream Events in JA Signaling Pathway

3.10 Histone Acetylation May Regulate JA-Mediated Signaling Systems

3.11 JA-Induced Pep1 Peptide Amplifies JA Downstream Signaling to Induce JA-Responsive Genes

3.12 Transcription Factors Acting Downstream of JA in Defense Signaling System

3.13 JA Signaling System-Activated Defense Genes

3.14 JA Signaling System Triggers Immune Responses Against Necrotrophic Pathogens

3.15 JA and Ethylene Signaling Pathways May Operate Concomitantly in Plant Innate Immune System

3.15.1 Cooperative Function of JA and ET Signaling Pathways in Plant Innate Immunity

3.15.2 ERF Transcription Factors May Concurrently Modulate JA and ET Signaling Pathways in Plant Immune System

3.15.3 Role of Ethylene Transcription Factors EIN3 and EIL1 in JA/ET Signaling Synergy

3.15.4 Ethylene Signaling System May Protect JA Signaling System Against Its SA-Mediated Suppression

3.16 JA Signaling May Suppress SA Signaling System

3.17 Suppression of JA Signaling by SA Signaling System

3.17.1 SA Suppresses Biosynthesis of JA

3.17.2 SA Suppresses JA Signaling System by Targeting GCC-Box Motifs in JA-Responsive Promoters

3.17.3 Role of WRKY62 Transcription Factor in the Suppression of JA Signaling by SA

3.17.4 Role of WRKY70 and MYB Transcription Factors in the Suppression of JA Signaling by SA

3.17.5 WRKY50 and WRKY51 Transcription Factors May Modulate JA Signaling Suppression by SA

3.17.6 Role of TGA Transcription Factors in the Suppression of JA Signaling by SA
3.18 Interplay Between JA and Abscisic Acid Signaling Systems in Plant Immune Responses ... 168
3.19 Crosstalk Between JA Signaling and Small RNA Signaling Systems ... 169
3.20 JA Signaling in Induced Systemic Immunity .. 171
3.20.1 JA Signaling Plays Major Role in Induced Systemic Resistance 171
3.20.2 Mobile Signal Involved in Induced Systemic Resistance 173
3.20.3 Priming in Induced Systemic resistance .. 173

References ... 174

4 Ethylene Signaling System in Plant Innate Immunity 195
4.1 Ethylene Signaling Is an Important Component in Plant Innate Immunity .. 196
4.2 Ethylene Biosynthesis in Plants ... 197
4.2.1 Enzymes Involved in Ethylene Biosynthesis 197
4.2.2 Pathogen Infection Triggers Enhanced Expression of Ethylene Biosynthesis Genes ... 199
4.2.3 PAMPs/HAMPs Induce Expression of ET Biosynthesis Genes and Trigger ET Biosynthesis .. 199
4.2.4 G-Proteins May Trigger Ethylene Biosynthesis Pathway 200
4.2.5 Role of Ca\(^{2+}\) Influx-Mediated Ca\(^{2+}\) Signature in Ethylene Biosynthesis ... 201
4.2.6 Role of Calcium-Dependent Protein Kinase (CDPK) in Induction of Ethylene Biosynthesis .. 202
4.2.7 Reactive Oxygen Species May Trigger Transcription of Ethylene Biosynthesis Genes ... 202
4.2.8 Nitric Oxide May Trigger Activation of Ethylene Biosynthesis Enzymes ... 204
4.2.9 MAP Kinase Cascades May Induce Biosynthesis of Ethylene 204
4.2.10 Role of Ubiquitin–Proteasome in Ethylene Biosynthesis 208

4.3 Ethylene Signal Transduction Downstream of Ethylene Biosynthesis ... 208
4.3.1 Ethylene Signal Perception by Membrane-Bound Receptor Complex ... 208
4.3.2 Ethylene Receptors Physically Interact with CTR1 and Transmit the Ethylene Signal ... 211
4.3.3 EIN2 Acts as the Central Regulator of Ethylene Signaling 212
4.3.4 Regulation of the Interaction of EIN2 and Ethylene Receptors by Protein Phosphorylation ... 213
4.3.5 EIN3/EIL Family of Proteins Functioning Downstream of EIN2 in Ethylene Signaling Pathway 215
4.3.6 ETR1–RTE1-Mediated CTR1-Independent Ethylene Signaling Pathway ... 218

4.4 ERF Transcription Factors Functioning Downstream in Ethylene Signaling System .. 219

4.5 ROS and NO Signaling Systems Activate Transcription of Ethylene-Responsive Genes .. 221

4.6 MAPK Cascade May Regulate Ethylene Signaling System 222

4.7 Ethylene Signaling Triggers Transcription of Plant Pattern Recognition Receptors (PRRs) in PAMP–PRR Signaling System ... 223

4.8 Ethylene Triggers Ca2+ Influx in Downstream Ethylene Signaling System ... 224

4.9 Ethylene and Jasmonate Signaling Interdependency in Triggering Plant Immune Responses ... 225

4.10 Ethylene Induces Transcription of Defense-Related Genes 228

4.11 Ethylene Signaling System Modulates Plant Immune Signaling System Triggering Resistance or Susceptibility Against Different Pathogens .. 229

References ... 231

5 Abscisic Acid Signaling System in Plant Innate Immunity 245

5.1 Abscisic Acid as a Multifaceted Plant Hormone Signal Triggering or Suppressing Plant Defense Responses 246

5.2 ABA Biosynthesis in Innate Immune Responses 251

5.2.1 Pathogen/PAMP Triggers Biosynthesis and Accumulation of ABA ... 251

5.2.2 ABA Biosynthesis Pathway .. 251

5.2.3 G-Proteins May Be Involved in ABA Biosynthesis 253

5.3 ABA Perception and Signal Transduction 254

5.3.1 ABA Signaling Pathway .. 254

5.3.2 ABA Receptors ... 256

5.3.3 PYR/PYL/RCAR Negatively Regulates PP2C 258

5.3.4 ABA-Bound PYR/PYL/RCAR Can Shift ABA Signaling Status to “Active” State ... 259

5.3.5 ABA-Induced PP2C Phosphatase Inhibition Leads to SnRK2 Protein Kinase-Activated Phosphorylation of ABA-Responsive Genes ... 259

5.3.6 Phosphatases in ABA Signaling Network 260

5.3.7 Role of SnRK2 Protein Kinase in ABA Signaling 261

5.3.8 Phospholipase D in ABA Signaling Pathway 264

5.4 ABA Signaling Events Downstream of PYR/PYL/RCAR-PP2C–SNRK2 Signaling Complex .. 265

5.4.1 Role of G-Proteins in ABA Downstream Signaling 265
5.4.2 Role of Ca\(^{2+}\) Signaling System in ABA Downstream Signaling ... 268
5.4.3 ABA Activates ROS Signaling System Downstream of ABA Signaling System .. 270
5.4.4 Nitric Oxide (NO) Acts Downstream of H\(_2\)O\(_2\) in ABA Signaling System .. 271
5.4.5 MAP Kinases Function Downstream of ABA Signaling System .. 271
5.4.6 ABA Regulates the Expression of Several Transcription Factors .. 272

5.5 Systemic Movement of ABA and Intercellular ABA Signaling Pathway.. 273
5.5.1 AtABCG25 Is Involved in the Intercellular Transport of ABA in ABA Signaling Pathway 273
5.5.2 AtABCG40 Is Involved in Intercellular Transport of ABA in ABA Signaling Pathway 274

5.6 Interplay Between ABA and JA Signaling Systems .. 274
5.6.1 ABA Signaling and JA Signaling Pathways May Be Interconnected ... 274
5.6.2 ABA and JA May Act Cooperatively in the Induction of Defense Genes .. 276
5.6.3 ABA May Suppress JA-Activated Defense Responses .. 276
5.6.4 Role of Mediator Subunit MED25 in ABA and JA Signaling Interplay .. 277

5.7 Interplay Between ABA and SA Signaling Systems .. 278
5.7.1 ABA May Suppress SA Biosynthesis .. 278
5.7.2 Suppression of SA Signaling System by ABA .. 279
5.7.3 Reciprocal Antagonistic Interaction Between ABA and SA Signaling Systems ... 280
5.7.4 Synergistic Interaction Between ABA and SA Signaling Systems .. 281

5.8 Interplay Between ABA and Ethylene Signaling Systems .. 282
5.8.1 ABA Activates Ethylene Biosynthesis and Ethylene Signaling Pathway .. 282
5.8.2 Ethylene Signaling Triggers ABA Biosynthesis .. 283
5.8.3 Synergistic and Antagonistic Interaction Between ABA and Ethylene Signaling Systems 285

5.9 ABA Signaling System May Trigger Defense Responses Against Pathogens .. 285
5.9.1 ABA Signaling Is Involved in Conferring Resistance Against a Wide Range of Pathogens 285
5.9.2 ABA Signaling System Triggers Callose Deposition and Confers Disease Resistance 286
5.9.3 ABA Signaling Cascade May Trigger Stomatal Closure Immune Responses ... 287
5.9.4 ABA Signaling May Modulate Other Hormone Signaling Systems and Trigger Defense Responses .. 288
5.10 ABA Signaling System May Confer Susceptibility Against Pathogens ... 289
5.10.1 ABA Induces Susceptibility Against Fungal and Bacterial Pathogens .. 289
5.10.2 ABA May Suppress Plant Immune Responses and Induce Susceptibility ... 289
5.10.3 ABA May Modulate JA, SA, and ET Signaling Pathways and Confer Susceptibility Against Pathogens 290
5.11 Pathogens May Suppress Host Defense Mechanisms by Activating ABA Signaling System to Cause Disease 291
5.12 Pathogens May Hijack ABA Signaling Pathway to Cause Disease .. 291
5.13 Pathogen Produces Toxins/Effectors and Suppresses ABA-Dependent Defenses ... 292
References ... 292

6 Auxin Signaling System in Plant Innate Immunity .. 311
6.1 Auxin as a Signaling Molecule ... 312
6.2 Auxin Biosynthesis .. 312
6.3 Auxin Signaling Pathway ... 314
6.3.1 Auxin-Binding Proteins/Receptors .. 314
6.3.2 Auxin–IAA Proteins ... 314
6.3.3 Auxin Response Factor (ARF) Proteins ... 315
6.3.4 Auxin-Inducible Gene Expression ... 316
6.3.5 Ubiquitin–Proteasome System in Auxin Signaling Pathway 316
6.3.6 Auxin Homeostasis .. 319
6.3.7 Auxin Transport ... 320
6.4 Pathogen Infection Elevates Auxin Biosynthesis in Plants 321
6.5 Antagonism Between Auxin Signaling and PAMPs/Elicitors-Triggered Signaling Systems .. 322
6.6 Antagonism Between Auxin Signaling and HAMP/Endogenous Elicitor-Triggered Signaling Systems .. 324
6.7 Interplay Between Auxin Signaling and Mitogen-Activated Protein Kinase Mediated Signaling Systems .. 326
6.8 Nitric Oxide Modulates Auxin Signaling .. 327
6.9 Interaction Between Auxin and Salicylic Acid (SA) Signaling Systems 327
6.9.1 Repression of Auxin Signaling Pathway by Salicylic Acid 327
6.9.2 Auxin Signaling Compromises the Induction of SA Signaling 328
6.9.3 Auxin Response Gene (GH3) Modulates SA Signaling ... 329
6.10 Role of Auxin Signaling in Systemic Acquired Resistance (SAR) ... 330
6.11 Interactions Between Auxin and Jasmonate Signaling Systems.......................... 331
6.12 Interaction Between Auxin and Ethylene Signaling Systems... 333
6.13 Interaction Between Small RNAs and Auxin Signaling Systems.............................. 335
6.14 Auxin Signaling May Promote Susceptibility ... 336
 6.14.1 Enhanced Auxin Levels Promote Susceptibility ... 336
 6.14.2 Role of Auxin Receptors in Promoting Disease Susceptibility 337
 6.14.3 Role of Aux/IAA Proteins in Promoting Susceptibility ... 338
 6.14.4 Role of the Auxin-Responsive GH3 Genes in Promoting Disease Susceptibility 339
 6.14.5 Conjugated Auxin Promotes Plant Disease Susceptibility ... 341
 6.14.6 Role of Auxin Transport System in Promoting Disease Susceptibility 342
6.15 Auxin Signaling May Promote Plant Disease Resistance .. 342
 6.15.1 Overexpression of Auxin-Responsive Genes Promote Disease Resistance 342
 6.15.2 Auxin Response Factors Modulate Plant Defense Responses ... 343
 6.15.3 Exogenous Application of Auxin Induces Plant Disease Resistance 344
References ... 344

7 Cytokinin Signaling System in Plant Immunity ... 359
 7.1 Cytokinin Signaling in Plant Immune System .. 360
 7.2 Cytokinin Biosynthesis .. 360
 7.3 Cytokinin Degradation ... 362
 7.4 Cytokinin Signal Perception and Transduction ... 362
 7.4.1 Cytokinin Receptors ... 362
 7.4.2 Cytokinin Phosphorelay Signaling System ... 363
 7.5 Cytokinin-Responsive Genes ... 366
 7.6 Cytokinins May Be Involved in Triggering Defense Responses ... 367
 7.6.1 Cytokinins Confer Resistance Against Pathogens ... 367
 7.6.2 Cytokinins Augments Plant Immune Responses by Enhancing Callose Deposition 368
 7.6.3 Cytokinins May Trigger Accumulation of Antimicrobial Phytoalexins to Confer Disease Resistance .. 368
 7.6.4 Cytokinins Induce Priming of Plant Cells for Activation of Defense-Related Genes 368
 7.6.5 Cytokinins May Modulate SA Signaling System to Trigger Immune Responses 369
7.6.6 Cytokins May Induce Resistance Independently of SA Signaling System ... 369
7.6.7 Cytokins May Modulate Redox Signaling to Trigger Immune Responses .. 370
7.7 Cytokins May Induce Susceptibility .. 370
7.8 Interplay Between Cytokinin and SA Signaling Pathways in Plant Immune System .. 371
 7.8.1 Cytokinin May Enhance SA Biosynthesis .. 371
 7.8.2 Type-B ARR Interacts with TGA3 of SA Signaling Pathway to Trigger Immune Responses .. 372
 7.8.3 Type-A ARRs Negatively Regulate SA-Dependent Immune Responses ... 373
 7.8.4 Cytokinin Synergistically Acts with SA to Trigger Immune Responses .. 374
7.9 Interaction Between Cytokinin and Abscisic Acid Signaling Systems .. 374
7.10 Interplay Between Cytokinin and Auxin Signaling Systems in Plant Immunity .. 376
References .. 377

8 Gibberellin Signaling in Plant Innate Immunity .. 383
 8.1 Role of Gibberellins in Plant Immune Responses ... 383
 8.2 Biosynthesis of Gibberellins .. 384
 8.3 GA Signaling Pathway .. 384
 8.3.1 GA Signal Receptors ... 384
 8.3.2 DELLA Proteins, Repressors of GA Signaling ... 386
 8.3.3 Suppression of the Repressive Activity of DELLAs by Proteasome-Dependent Degradation of DELLAs 386
 8.4 GA Triggers Susceptibility or Resistance Against Different Pathogens .. 388
 8.4.1 GA Triggers Resistance Against Pathogens ... 388
 8.4.2 GAs May Negatively Regulate Plant Defense Responses and Induce Susceptibility .. 388
 8.5 Interplay of GA Signaling System with SA Signaling System in Modulating Plant Immune System .. 389
 8.6 Interplay of GA and JA Signaling Systems in Modulating Plant Immune System ... 391
 8.6.1 Antagonistic Interaction Between GA and JA Signaling Systems .. 391
 8.6.2 JA Induces Enhanced Expression of DELLA Genes Involved in GA Signaling ... 391
 8.6.3 DELLAs Modulate JA Responses by Degrading JAZ Proteins and/or Sequestering JAZs into Inactive Complexes .. 392
Contents

9.7 BR Signaling Machinery Negatively Regulates Plant Immune Responses andInduces Susceptibility 428
9.8 Brassinosteroid Signaling Negatively Regulates Salicylate-Mediated Immunity ... 428
9.9 BR Signaling Negatively Regulates Gibberellic Acid (GA)-Mediated Plant Immune Responses 429
9.10 Interplay Between BR and PAMP–PRR Signaling Systems 430
9.10.1 PAMP–PRR Signaling Complex .. 430
9.10.2 Crosstalk Between BR Biosynthesis Pathway and PAMP–PRR Signaling .. 431
9.10.3 Overexpression of BRI1 Antagonizes BAK1-Mediated PAMP–PRR Signaling .. 431
9.10.4 BR-Responsive Transcription Regulator BZR1 May Suppress PAMP–PRR Signaling System 433
9.10.5 Antagonistic Regulation of PAMP–Triggered Immunity by the bHLH transcription Factor HB11 433
9.10.6 Activation of BRI1 Pathway Leads to Inhibition of PAMP-Triggered Immunity .. 433
9.10.7 Inhibition of PRR-Mediated Immune Signaling by BR Perception .. 435
9.11 Pathogen Hijacks Brassinosteroid Signaling Machinery to Cause Disease .. 435
9.12 Crosstalk Between BR and Other Hormone Signaling Systems 435
References ... 436

Index .. 445
Plant Hormone Signaling Systems in Plant Innate Immunity
Vidhyasekaran, P.
2015, XVII, 458 p. 102 illus., Hardcover
ISBN: 978-94-017-9284-4