Contents

1 Why Such an Effort? ... 1
 1.1 The Problem with the Magnification .. 1
 1.2 The Limitation of Resolution ... 2
 1.3 Electron Waves .. 6
 1.4 The Role of Magnification .. 8

2 What Should we Know about Electron Optics and the Construction of an Electron Microscope? ... 11
 2.1 The Principle of Multistage Imaging ... 11
 2.2 Rotational-Symmetric Magnetic Fields as Electron Lenses 12
 2.3 Lens Aberrations .. 15
 2.4 Resolution Limit Considering the Spherical Aberration 19
 2.5 Electron Gun .. 20
 2.6 “Richtstrahlwert” (Brightness) .. 24
 2.7 We Construct an Electron Microscope ... 27
 2.7.1 Illumination System ... 27
 2.7.2 Imaging System .. 29
 2.7.3 Specimen Stage .. 30
 2.7.4 Acquiring the Images .. 32
 2.7.5 Vacuum System .. 34
 2.7.6 Miscellaneous ... 37
 References .. 39

3 We Prepare Electron-Transparent Samples ... 41
 3.1 What is the Challenge? ... 41
 3.2 “Classical” Methods ... 43
 3.3 Cutting, Grinding, and Ion Milling .. 47
 3.4 Focussed Ion Beam (“FIB”) Techniques ... 51
 References .. 56
Let us Start with Practical Microscopy

4.1 What do We Peripherally Need?
4.2 We Put the Specimen into the Holder and Insert it into the Microscope
4.3 We Check the (alignment) State of the Microscope
4.4 Focussing the Image—Sharpness and Contrast
4.5 Contamination and Sample Damaging

References

Let us Switch to Electron Diffraction

5.1 Why Diffraction Reflections?
5.2 Crystal Lattices and Lattice Planes
5.3 Selected Area and Convergent Beam Electron Diffraction
5.4 What Can We Learn from Selected Area Diffraction Patterns?
 5.4.1 Radii in Ring Diagrams
 5.4.2 Rules for Forbidden Reflections
 5.4.3 Intensities of the Diffraction Reflections
 5.4.4 Positions of Diffraction Reflections in Point Diagrams
 5.4.5 Indexing of Diffraction Reflections
5.5 Kikuchi- and HOLZ-lines
5.6 Amorphous Samples

References

Why Do We See Any Contrast in the Images?

6.1 Elastic Scattering of Electrons Within the Sample
6.2 Mass Thickness and Diffraction Contrast
6.3 Brightfield and Darkfield Imaging
6.4 Bending Contours, Dislocations, and Semicohherent Particles
6.5 Thickness Contours, Stacking Faults, and Twins
6.6 Moiré Patterns
6.7 Magnetic Domains: Lorentz Microscopy

References

We Increase the Magnification

7.1 Imaging of Atomic Columns in Crystals: Phase Contrast
7.2 Contrast Transfer by the Objective Lens
7.3 Wave-optical Interpretation of the Resolution Limit
7.4 Periodic Distribution of Brightness in Pictures: Fourier Analysis
7.5 Mass Thickness and Phase Contrast
7.6 Contrast of Amorphous Samples
7.7 Correction of Astigmatism
7.8 Measurement of the Resolution Limit
7.9 Correction of Spherical and Chromatic Aberration
7.10 Interpretation of High Resolution TEM Images

References
8 Let Us Switch to Scanning Transmission Electron Microscopy
8.1 What Happens Electron-Optically?
8.2 Resolution or: What is the Smallest Diameter of the Electron Probe?
8.3 Contrast in the Scanning Transmission Electron Microscopic Image
8.4 Speciality: High Angle Annular Darkfield Detector
References

9 Let us Use the Analytical Possibilities
9.1 Analytical Signals by Inelastic Interaction
9.1.1 Emission of X-rays
9.1.2 Electron Energy Losses
9.2 Energy Dispersive Spectroscopy of Characteristic X-rays ("EDXS")
9.2.1 X-ray Spectrometers and Spectra
9.2.2 Qualitative Interpretation of X-ray Spectra
9.2.3 Quantifying X-ray Spectra
9.2.4 Line Profiles and Elemental Mappings
9.3 Electron Energy Loss Spectroscopy ("EELS")
9.3.1 Electron Energy Spectrometer
9.3.2 Low-Loss and Core-Loss Regions of the Spectra
9.3.3 Qualitative Elemental Analysis
9.3.4 Background and Multiple Scattering: Requirements to the Sample
9.3.5 Measurement of the Specimen Thickness
9.3.6 Edge Fine Structure: Bonding Analysis
9.3.7 Quantifying Energy Loss Spectra
9.4 Energy Filtered Imaging
9.5 Comparison Between EDXS and EELS
References

10 Basics Explained in More Detail (with a Bit More Mathematics)
10.1 Diffraction at an Edge (Huygens’ Principle)
10.2 Wave Function for Electrons
10.3 Electron Wavelength Relativistically Calculated
10.4 Electron Beam Paths in Rotational-Symmetric Magnetic Fields
10.5 Resolution Limit Considering Spherical Aberration
10.6 Schottky Effect
10.7 Electric Potential in Rotational-Symmetric Arrangements of Electrodes
10.8 Laue Equations and Reciprocal Lattice, Ewald Construction
10.9 Kinematical Model: Lattice Factor and Structure Factor
10.10 Debye Scattering
10.11 Electrons Within a Field of a Central Force
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.12</td>
<td>Mean Free Path for Elastic Scattering</td>
<td>277</td>
</tr>
<tr>
<td>10.13</td>
<td>Distances in Moiré Patterns</td>
<td>279</td>
</tr>
<tr>
<td>10.14</td>
<td>Contrast Transfer Function</td>
<td>282</td>
</tr>
<tr>
<td>10.15</td>
<td>Scherzer Focus</td>
<td>290</td>
</tr>
<tr>
<td>10.16</td>
<td>Delocalisation</td>
<td>294</td>
</tr>
<tr>
<td>10.17</td>
<td>Potential in Electrostatic Multipoles</td>
<td>297</td>
</tr>
<tr>
<td>10.18</td>
<td>Electron Probe and Aberrations</td>
<td>299</td>
</tr>
<tr>
<td>10.19</td>
<td>Classical Inelastic Collision</td>
<td>306</td>
</tr>
<tr>
<td>10.20</td>
<td>Efficiency of Energy Dispersive X-ray Detectors</td>
<td>307</td>
</tr>
<tr>
<td>10.21</td>
<td>Calculation of Cliff-Lorimer k-factors</td>
<td>313</td>
</tr>
<tr>
<td>10.22</td>
<td>Correction of Absorption for EDXS</td>
<td>318</td>
</tr>
<tr>
<td>10.23</td>
<td>Prisms for Electrons</td>
<td>320</td>
</tr>
<tr>
<td>10.24</td>
<td>Convolution of Functions</td>
<td>324</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>327</td>
</tr>
<tr>
<td></td>
<td>Summary and Outlook</td>
<td>329</td>
</tr>
<tr>
<td></td>
<td>Physical Constants</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td>Hints for Further Reading</td>
<td>333</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>335</td>
</tr>
</tbody>
</table>
Analytical Transmission Electron Microscopy
An Introduction for Operators
Thomas, J.; Gemming, Th.
2014, XVII, 348 p. 238 illus., 33 illus. in color., Hardcover
ISBN: 978-94-017-8600-3