Part I: General and Molecular Aspects of Bio-Hydrogen Generation

1 Bioenergy from Microorganisms: An Overview 3–21
 Patrick C. Hallenbeck

 Summary 3
 I. Climate Change and Future Energy Challenges 4
 II. A Wide Variety of Biofuels 6
 III. The Microbial Production of Hydrogen 11
 References 19

2 Structural Foundations for O₂ Sensitivity and O₂ Tolerance in [NiFe]-Hydrogenases 23–41
 Anne Volbeda and Juan C. Fontecilla-Camps

 Summary 23
 I. Introduction 24
 II. [NiFe]-Hydrogenases 25
 III. Structural Studies of O₂-Sensitive [NiFe]-Hydrogenases 27
 IV. Structural Studies of O₂-Resistant [NiFeSe]-Hydrogenases 29
 V. Structural Studies of O₂-Tolerant Membrane-Bound [NiFe]-Hydrogenases 30
 VI. Regulation of Hydrogenase Expression and Activity: The Example of *Escherichia coli* 32
 VII. [NiFe]-Hydrogenase Maturation 33
 VIII. Biotechnological Applications 35
 IX. Conclusions 37
 References 37
7 Systems Biology of Photobiological Hydrogen Production by Purple Non-sulfur Bacteria 155–176
James B. McKinlay
Summary 155
I. Introduction 156
II. Purple Non-sulfur Bacteria in the Light of Genomics and Systems Biology 158
III. Deciphering and Engineering the Metabolic and Regulatory Mechanisms Involved in H₂ Production 162
IV. Future Directions for a System-Level Understanding of Photobiological H₂ Production 169
References 172

8 The Extremely Thermophilic Genus Caldicellulosiruptor: Physiological and Genomic Characteristics for Complex Carbohydrate Conversion to Molecular Hydrogen 177–195
Jeffrey V. Zurawski, Sara E. Blumer-Schuette, Jonathan M. Conway, and Robert M. Kelly,
Summary 177
I. Introduction 178
II. Extracellular Deconstruction of Lignocellulosic Biomass 179
III. Carbohydrate Transport 184
IV. Intermediary Metabolism 186
V. Metabolism of Fuel Production 188
References 192

9 Members of the Order Thermotogales: From Microbiology to Hydrogen Production 197–224
Martina Cappelletti, Davide Zannoni, Anne Postec, and Bernard Ollivier
Summary 197
I. Introduction 198
II. Habitat 198
III. Metabolic Features 202
IV. Hydrogen Production by Thermotogales spp. 206
V. Future Perspectives 218
References 219

10 Bioelectrochemical Systems for Indirect Biohydrogen Production 225–233
John M. Regan and Hengjing Yan
Summary 225
I. Principles of Microbial Electrolysis Cells 226
II. Microbial Catalysts at the Anode 229
III. Cathode Reaction 229
References 231
Part II: Applied Aspects in Biohydrogen Production

11 Applications of Photofermentative Hydrogen Production

Inci Eroglu, Ebru Özdür, Ela Eroglu, Meral Yücel, and Ufuk Gündüz

Summary 238

I. Introduction 238

II. Guidelines for Effective Photofermentative Hydrogen Production 239

III. Utilization of Waste Materials for Photofermentative Hydrogen Production 242

IV. Photofermentative Hydrogen Production with Dark Fermenter Effluents 246

V. Optimization of Hydrogen Yield 254

VI. Efficiency Analysis 260

VII. Future Prospects 260

References 262

12 Photosynthesis and Hydrogen Production in Purple Non Sulfur Bacteria: Fundamental and Applied Aspects

Alessandra Adessi and Roberto De Philippis

Summary 269

I. Introduction 270

II. The H₂ Production Process in Purple Bacteria 270

III. Anoxygenic Photosynthesis 272

IV. Photosynthetic Efficiency (PE) 277

V. Substrate to Hydrogen Conversion (SC) 282

VI. Process Bottlenecks – Conclusions 283

References 285

13 Photobioreactors Design for Hydrogen Production

José Maria Fernández-Sevilla, Francisco Gabriel Acién-Fernández, and Emilio Molina-Grima

Summary 291

I. Introduction 292

II. Major Routes for the Photobiological H₂ Production 293

III. Major Factors Impacting on Photobioreactor Performance 295

IV. Principles for Photobioreactors Design and Scale Up 298

V. Concluding Remarks 316

References 317
14 Immobilization of Photosynthetic Microorganisms for Efficient Hydrogen Production 321–347
Anatoly Tsygankov and Sergey Kosourov

Summary
I. Introduction 322
II. Methods of Immobilization 322
III. Mechanical Support and Photobioreactors for Immobilized Photosynthetic Microorganisms 330
IV. Hydrogen Production by Purple Bacteria 331
V. Hydrogen Production by Immobilized Microalgae 332
VI. Hydrogen Production by Immobilized Cyanobacteria 337
VII. Concluding Remarks 341
References 342

15 Hydrogen Production and Possible Impact on Global Energy Demand: Open Problems and Perspectives 349–356
Davide Zannoni, Giacomo Antonioni, Dario Frascari, and Roberto De Philippis

Summary 349
I. Introduction 350
II. Hydrogen as Energy Carrier 350
III. Hydrogen Storage: An Open Problem 351
IV. Safety Issues in the Use of Hydrogen as a Fuel 354
V. Economical and Political Issues 354
VI. Conclusions 355
References 355

Subject Index 357–366
Microbial BioEnergy: Hydrogen Production
Zannoni, D.; De Philippis, R. (Eds.)
2014, XXXV, 366 p. 66 illus., 55 illus. in color., Hardcover
ISBN: 978-94-017-8553-2