Contents

1 Classical Continuous Models and Their Analysis
1.1 The Basic Equations
1.1.1 The Acoustics Equation
1.1.2 Maxwell’s Equations
1.1.3 The Linear Elastodynamics System
1.1.4 Boundary Conditions
1.2 Functional Issues
1.2.1 Some Functional Spaces
1.2.2 Variational Formulations
1.2.3 Energy Identities
1.2.4 Well-Posedness Results of Waves Equations
1.3 Plane Wave Solutions
1.3.1 A General Solution of the Homogeneous Wave Equation
1.3.2 Application to Maxwell’s Equations
1.3.3 The 2D Case
1.3.4 Application to the Isotropic Linear Elastodynamics System
References

2 Definition of Different Types of Finite Elements
2.1 1D Mass-Lumping and Spectral Elements
2.1.1 A Complex Solution for a Simple Problem
2.1.2 Mass-Lumping
2.1.3 Spectral Elements
2.1.4 Nodal and Modal Elements
2.2 Quadrilaterals and Hexahedra
2.2.1 Higher-Dimensional Tensor Quadrature Rules
2.2.2 Tensor Unit Spectral Elements
2.2.3 Extension to Quadrilaterals and Hexahedra

References
2.3 Triangles and Tetrahedra ... 52
 2.3.1 Spectral Triangles and Tetrahedra 52
 2.3.2 Mass-Lumped Triangles and Tetrahedra 57
2.4 Purely 3D Elements .. 61
 2.4.1 Wedges .. 62
 2.4.2 Pyramids .. 62
2.5 Tetrahedral and Triangular Edge Elements 67
 2.5.1 Mixed Formulation .. 67
 2.5.2 A First Family .. 67
 2.5.3 A Second Family ... 71
 2.5.4 Tetrahedral Mass-Lumped Edge Elements 73
 2.5.5 Triangular Mass-Lumped Edge Elements 76
2.6 Hexahedral and Quadrilateral Edge Elements 79
 2.6.1 First Family .. 79
 2.6.2 Second Family .. 82
2.7 $H(div)$ Finite Elements .. 84
 2.7.1 Tetrahedral and Triangular Elements 84
 2.7.2 Hexahedral and Quadrilateral Elements 86
2.8 Other Mixed Elements ... 88
 2.8.1 Pyramidal and Prismatic Edge Elements 88
 2.8.2 Pyramidal and Prismatic $H(div)$ Elements 90
References ... 91

3 Hexahedral and Quadrilateral Spectral Elements
for Acoustic Waves ... 95
 3.1 Second-Order Formulation of the Acoustics Equation 95
 3.1.1 The Continuous and Approximate Problem 95
 3.1.2 Discretization of the Integrals 96
 3.2 First-Order Formulation of the Acoustics Equation 100
 3.2.1 The Mixed Formulation 101
 3.2.2 The Mass Matrices ... 102
 3.2.3 The Stiffness Matrices 103
 3.3 Comparison of the Methods 106
 3.3.1 Matrix Formulation .. 106
 3.3.2 A Theorem of Equivalence 107
 3.3.3 Comparison of the Costs 109
 3.4 Dispersion Relation ... 112
 3.4.1 The Continuous Equation 113
 3.4.2 A Didactic Case: The P_1 Approximation 113
 3.4.3 The Concept of Numerical Dispersion 116
 3.4.4 P_2 Approximation 117
 3.4.5 P_3 and Higher-Order Approximations 120
 3.4.6 Extension to Higher Dimensions 126
3.5 Reflection-Transmission by a Discontinuous Interface 135
3.5.1 The Continuous Problem 135
3.5.2 FEM Approximation of the Heterogeneous Wave Equation 136
3.5.3 Taylor Expansion of the Wavenumber 137
3.5.4 Interface Between Two Elements 138
3.5.5 Interface at an Interior Point 139
3.5.6 Extension to Higher-Order Approximations 140
3.5.7 A Two-Layer Experiment .. 141

3.6 hp-a priori Error Estimates .. 145
3.6.1 Some Properties of Meshes 146
3.6.2 Interpolation Errors for Quadrilaterals and Hexahedra 148
3.6.3 hp-Estimation of Numerical Integration Errors 152
3.6.4 hp a priori Error Estimate for the Semi-discrete Approximation 159

3.7 The Linear Elastodynamics System 166
3.7.1 Second Order Formulation 166
3.7.2 First-Order Formulation 167
3.7.3 Comparison of the Two Approaches 170

References .. 173

4 Discontinuous Galerkin Methods 175
4.1 General Formulation for Linear Hyperbolic Problems 175
4.1.1 The Discontinuous Galerkin Formulation 175
4.1.2 Energy Identity .. 181
4.1.3 Application to Some Wave Equations 184
4.2 Approximation by Triangles and Tetrahedra 188
4.2.1 The Mass Integrals ... 189
4.2.2 The Stiffness Integrals 191
4.2.3 The Jump Terms ... 193
4.3 Approximation by Quadrilaterals and Hexahedra 197
4.3.1 The Mass Integrals ... 197
4.3.2 The Stiffness Integrals 198
4.3.3 The Jump Terms ... 199
4.3.4 Application to Wave Equations 201
4.4 Comparison of the DG Methods for Maxwell’s Equations 207
4.4.1 Gauss or Gauss–Lobatto? 207
4.4.2 Tetrahedra with and Without Reconstruction of the Stiffness Matrix 210
4.4.3 Tetrahedra Versus Hexahedra 210
4.5 Plane Wave Analysis ... 218
4.5.1 The Eigenvalue Problem for the 1D Model 218
4.5.2 Numerical Dispersion and Dissipation 221
4.5.3 Extension to Higher Dimensions 224
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6</td>
<td>Interior Penalty Discontinuous Galerkin Methods</td>
<td>226</td>
</tr>
<tr>
<td>4.6.1</td>
<td>General Formulation</td>
<td>226</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Coercivity of the Discrete Operator</td>
<td>228</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>232</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>The Maxwell's System and Spurious Modes</td>
<td>233</td>
</tr>
<tr>
<td>5.1</td>
<td>A First Model and Its Approximation</td>
<td>233</td>
</tr>
<tr>
<td>5.1.1</td>
<td>The Continuous Model</td>
<td>233</td>
</tr>
<tr>
<td>5.1.2</td>
<td>The Approximate Model</td>
<td>234</td>
</tr>
<tr>
<td>5.1.3</td>
<td>The Discrete Mass Integral</td>
<td>235</td>
</tr>
<tr>
<td>5.2</td>
<td>A Second Model and Its Approximations</td>
<td>237</td>
</tr>
<tr>
<td>5.2.1</td>
<td>The Continuous Model</td>
<td>237</td>
</tr>
<tr>
<td>5.2.2</td>
<td>General Formulations of the Approximations</td>
<td>238</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Approximation in $H(Curl, \Omega)$</td>
<td>239</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Approximation in $[H^1(\Omega)]^3$</td>
<td>240</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Comparison of the Approximations</td>
<td>242</td>
</tr>
<tr>
<td>5.3</td>
<td>Suppressing Spurious Modes</td>
<td>245</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Some Background About the Spurious Modes</td>
<td>245</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Computation of the Eigenvalues of $\nabla \times \nabla \times$ on a Cube</td>
<td>252</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Discontinuous Galerkin Methods</td>
<td>255</td>
</tr>
<tr>
<td>5.3.4</td>
<td>The Second Family of Edge Elements</td>
<td>258</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Continuous Elements</td>
<td>261</td>
</tr>
<tr>
<td>5.3.6</td>
<td>The Case of the First Family of Edge Elements</td>
<td>261</td>
</tr>
<tr>
<td>5.4</td>
<td>Error Estimates for DGM</td>
<td>263</td>
</tr>
<tr>
<td>5.4.1</td>
<td>The Discontinuous Galerkin Formulation</td>
<td>263</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Choice of a Projector</td>
<td>264</td>
</tr>
<tr>
<td>5.4.3</td>
<td>hp-Projection Errors</td>
<td>267</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Trace Lemmas</td>
<td>271</td>
</tr>
<tr>
<td>5.4.5</td>
<td>A Priori Error Estimates in Energy Norm</td>
<td>273</td>
</tr>
<tr>
<td>5.4.6</td>
<td>Extension to the Dissipative Case</td>
<td>280</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>282</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Approximating Unbounded Domains</td>
<td>285</td>
</tr>
<tr>
<td>6.1</td>
<td>Absorbing Boundary Conditions (ABC)</td>
<td>286</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Transparent Condition of the Wave Equation</td>
<td>286</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Construction of ABC for the Wave Equation</td>
<td>287</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Plane Wave Analysis</td>
<td>291</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Finite Element Implementation</td>
<td>292</td>
</tr>
<tr>
<td>6.1.5</td>
<td>The Maxwell’s System</td>
<td>296</td>
</tr>
<tr>
<td>6.2</td>
<td>Perfectly Matched Layers (PML)</td>
<td>297</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Interpretation of the Method</td>
<td>297</td>
</tr>
<tr>
<td>6.2.2</td>
<td>The Acoustics System</td>
<td>300</td>
</tr>
<tr>
<td>6.2.3</td>
<td>The Maxwell’s System</td>
<td>306</td>
</tr>
<tr>
<td>6.2.4</td>
<td>The Linear Elastodynamics System</td>
<td>308</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Modified PML</td>
<td>310</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>312</td>
</tr>
</tbody>
</table>
7 Time Approximation

7.1 Schemes with a Constant Time-Step 315
 7.1.1 Construction of the Schemes 316
 7.1.2 Stability of the Schemes by Plane Wave Analysis 320
 7.1.3 Stability of the Schemes by Energy Techniques 325
 7.1.4 The Modified Equation and Unbounded Domains 327
 7.1.5 A Remark About the Time Approximation of Dissipative
 DG Schemes .. 330

7.2 Local Time Stepping ... 334
 7.2.1 Symplectic Schemes for Conservative Approximations . 335
 7.2.2 Scheme Based on a Lagrange Multiplier 340
 7.2.3 An Explicit Conservative Scheme for Second-Order
 Wave Equations ... 346

References ... 353

8 Some Complex Models ... 355

8.1 The Linearized Euler Equations 355
 8.1.1 Discontinuous Galerkin Approximation 356
 8.1.2 H^1-L^2 Approximation 360

8.2 The Linear Cauchy–Poisson Problem 364
 8.2.1 The Continuous Problem and Its Approximation 364
 8.2.2 Unbounded Domains 367

8.3 Vibrating Thin Plates .. 372
 8.3.1 The Continuous Models 373
 8.3.2 Plane Wave Analysis 374
 8.3.3 Mixed Spectral Element Approximation 378

References ... 380
Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations
Cohen, G.; Pernet, S.
2017, XVII, 381 p. 79 illus., 39 illus. in color., Hardcover
ISBN: 978-94-017-7759-9