Contents

1 High-Temperature Environment and Composite Materials 1
 1.1 Main Types of High-Temperature Effects on Composite Materials .. 1
 1.1.1 Aerodynamical Heating .. 2
 1.1.2 Gas-Dynamical Heating .. 10
 1.1.3 Heating in Energetic Systems 12
 1.1.4 Technological Heating .. 14
 1.1.5 Action of Fire .. 15
 1.2 Ablation Processes in Composites 17
 1.2.1 Classification of Ablation Processes 18
 1.2.2 Volumetric Ablation ... 19
 1.2.3 Surface Ablation ... 20
 1.3 Phenomena in Composite Materials Under High Temperatures 21
 1.4 A Physical Model of Ablative Composite 24
 References .. 25

2 General Equations of Multiphase Continuum Mechanics for Ablative Composites .. 31
 2.1 Conservation Laws .. 31
 2.1.1 Main Concepts of Tensor Analysis 31
 2.1.2 System of Conservation Laws for Phases 34
 2.1.3 Relationships on a Surface of a Strong Discontinuity 35
 2.2 Constitutive Relations for Phases of Ablative Composites 36
 2.2.1 The Fourier Law .. 36
 2.2.2 General Thermodynamical Identity 37
 2.2.3 Natural Configurations of Phases 38
 2.2.4 General Form of Constitutive Relations 40
2.3 Relations at the Phase Interface 43
 2.3.1 Main Equations .. 43
 2.3.2 Classification of Phase Interfaces 44
 2.3.3 Consequences of General Equations 45
 2.3.4 Tensor of Chemical Potential 46
2.4 Equation of Phase Transformation Rate 47
2.5 Infinitesimal Strains of Solid Phases 49
 2.5.1 Main Assumptions 49
 2.5.2 Constitutive Relations 50
 2.5.3 Quasistatic Processes 53
 2.5.4 Conservation Equations 53
 2.5.5 Conditions on the Phase Interface 54
 2.5.6 Rate of the Phase Transformation 56
References ... 58

3 Mathematical Model of Ablative Composites 61
 3.1 Main Assumptions ... 61
 3.2 Method of Asymptotic Averaging 64
 3.2.1 Boundary Conditions 64
 3.2.2 Initial Conditions 66
 3.2.3 Statement of Thermomechanics Problem for Ablative
 Composites ... 66
 3.2.4 Asymptotic Expansions 67
 3.2.5 Zero-Level Local Problem
 over the Periodicity Cell 67
 3.2.6 First-Level Local Problems
 Over the Periodicity Cell 70
 3.3 Averaging of Processes in Ablative Composites 71
 3.3.1 Averaged Equations 71
 3.3.2 Averaged Constitutive Relations 72
 3.3.3 Statement of the Averaged Problem 73
 3.4 Analysis of Asymptotic Averaging Method 74
 3.5 Statement of Problems for Composites with Ablative Matrix
 and Fibres .. 75
 3.5.1 Main Equations 75
 3.5.2 Motion Equation for the Ablation Surface Σ 77
 3.5.3 Constitutive Relations 77
 3.5.4 Boundary and Initial Conditions 78
 3.5.5 Statement of the Problem in Terms of Stresses 80
References ... 81
4 Behavior of Matrices at High Temperatures

4.1 Varying Density of Matrices at High Temperatures
 4.1.1 Determination of a Volumetric Ablation Rate of Matrices
 4.1.2 Experimental Data
 4.1.3 Pore Pressure

4.2 Effective Elastic Properties of Ablative Matrices at High Temperatures
 4.2.1 Solving the Mechanical Local Problem Over a Periodicity Cell
 4.2.2 Effective Constitutive Relations
 4.2.3 Experimental Investigation of Changing Elastic Properties of Matrices Under Heating

4.3 Heat Expansion/Shrinkage of Matrices at High Temperatures

4.4 Strength Properties of Matrices at High Temperatures
 4.4.1 Microstresses in Phases
 4.4.2 Failure Criterion for Matrices at High Temperatures
 4.4.3 Experimental Investigation of Strength Properties of Matrices Under High Temperatures

4.5 Heat Conductivity and Heat Capacity of Matrices at High Temperatures
 4.5.1 Solving the Local Problem of Heat Conduction
 4.5.2 Experimental Data
 4.5.3 Heat Capacity

4.6 Gas Permeability of Matrices at High Temperatures
 4.6.1 Solving the Local Problem of Gas Dynamics

References

5 Reinforcing Fibres Under High Temperatures

5.1 Changing Phase Composition of Fibres Under Heating
5.2 Heat Conductivity and Heat Capacity of Ablative Fibres
5.3 Varying Elastic Properties of Fibres Under Heating
5.4 Heat Deformation of Fibres
5.5 Strength Properties of Fibres Under High Temperatures
 5.5.1 Strength of Idealized Fibre
 5.5.2 Model of a Thread of Fibres with Defects
5.6 Short Fibres and Dispersed Particles

References
6 Unidirectional Composites Under High Temperatures 135
6.1 Structural Model of Unidirectional Composites 135
 6.1.1 Peculiarities of Unidirectional Composites Under High Temperatures 135
 6.1.2 Multilevel Internal Structure of Unidirectional Composite 136
6.2 Model of Microcomposite 138
 6.2.1 Elastic Properties 138
 6.2.2 Heat Deformations and Phase Interactions 141
 6.2.3 Microstresses 142
 6.2.4 Heat Conductivity 143
6.3 Thermo-Elastic Characteristics and Heat Conductivity of Unidirectional Composites 144
 6.3.1 Theoretical Relations 144
 6.3.2 Experimental Data 144
6.4 Strength Properties of Unidirectional Composite Under High Temperatures 147
 6.4.1 Thermal Strength of Unidirectional Composite in Ensinon Along Reinforcing Direction 148
 6.4.2 Experimental Data 153
 6.4.3 Thermal Strength of Unidirectional Composite in Compression Along Reinforcing Direction 156
 6.4.4 Thermal Strength of Unidirectional Composite in Transverse Tension/Compression and Shear 158
 6.4.5 Thermal Microstresses and Microcracking 159
 6.4.6 Thermal Strength of Unidirectional Composite in Longitudinal Shear 161
 6.4.7 Multiaxial Loading of Unidirectional Composite 163
6.5 Heat Expansion/Shrinkage 164
References 165

7 Textile Ablative Composite Materials 167
7.1 Model of a Structure of Ablative Textile Composite Material 167
7.2 Model of a Layer with Curved Threads 169
 7.2.1 Elastic Properties 169
 7.2.2 Heat Deformations and Coefficients of Phase Interaction 172
 7.2.3 Microstresses 172
 7.2.4 Heat Conductivity of Layers with Curved Threads 174
7.3 Constitutive Relations for Ablative Textile Composites 175
7.4 Thermo-Elastic Moduli and Heat Conductivity Coefficients of Textile Composites 176
 7.4.1 Theoretical Results 176
 7.4.2 Experimental Data 178
7.5 Heat Deformations ... 181
 7.5.1 Theoretical Relations 181
 7.5.2 Experimental Data 182
7.6 Coefficients of Phase Interaction 184
7.7 Thermal Strength ... 185
 7.7.1 Destruction by Types \(A_a \) and \(B_a \) 187
 7.7.2 Destruction by the Types \(C \) and \(D \) 192
 7.7.3 Experimental Data 193
7.8 Thermal Properties of Textile Composites 194
 7.8.1 Heat Conductivity 194
 7.8.2 Density .. 196
7.9 Gas Permeability .. 199
References ... 200

8 Composites Reinforced by Dispersed Particles 201
 8.1 Model of the Composite 201
 8.2 Thermo-Elastic Characteristics 202
 8.2.1 One-Dimensional Model 202
 8.2.2 Three-Dimensional Relations 205
 8.3 Strength .. 206
 8.3.1 Strength in Tension 206
 8.3.2 Strength in Compression 207
 8.4 Thermal Properties .. 208
 8.4.1 Heat Conductivity 208
 8.4.2 Density and Heat Capacity 209
 8.4.3 Gas Permeability 209
References ... 211

9 Phenomena in Composite Materials Caused
 by Gradient Heating ... 213
 9.1 Internal Heat-Mass-Transfer and Stresses in Ablative
 Composites Under Gradient Heating 214
 9.1.1 Problem Statement and Solution 214
 9.1.2 Computed Results 215
 9.2 Plane Problems of Thermomechanics for Composites
 Under High Temperatures 219
 9.3 Heat Deformations, Stresses and Load-Bearing Capacity
 of a Composite Plate Under Gradient Heating 223
 9.3.1 Problem Statement 223
 9.3.2 Other Cases of Loading a Plate 227
 9.3.3 Computed Results 228
References ... 233
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Linear Ablation of Composites</td>
<td>235</td>
</tr>
<tr>
<td>10.1</td>
<td>Main Types of Linear Ablation of Composites</td>
<td>236</td>
</tr>
<tr>
<td>10.2</td>
<td>Combustion Rate</td>
<td>236</td>
</tr>
<tr>
<td>10.2.1</td>
<td>General Equations</td>
<td>236</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Combustion Rate of a Composite in Air Flow</td>
<td>239</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Computed Results</td>
<td>240</td>
</tr>
<tr>
<td>10.3</td>
<td>Sublimation Rate</td>
<td>241</td>
</tr>
<tr>
<td>10.4</td>
<td>Thermomechanical Erosion Rate</td>
<td>243</td>
</tr>
<tr>
<td>10.4.1</td>
<td>General Relationships</td>
<td>243</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Isotropic Composites</td>
<td>245</td>
</tr>
<tr>
<td>10.4.3</td>
<td>Transversally Isotropic Composites</td>
<td>250</td>
</tr>
<tr>
<td>10.4.4</td>
<td>Textile Composites</td>
<td>253</td>
</tr>
<tr>
<td>10.4.5</td>
<td>Computed Results</td>
<td>254</td>
</tr>
<tr>
<td>10.5</td>
<td>Melting Rate</td>
<td>255</td>
</tr>
<tr>
<td>10.6</td>
<td>Comparison of Theoretical and Experimental Results</td>
<td>256</td>
</tr>
<tr>
<td>10.6.1</td>
<td>Effect of a Matrix Type on the Rate of Linear Ablation of Composites</td>
<td>257</td>
</tr>
<tr>
<td>10.6.2</td>
<td>Effect of a Fibre Type on the Rate of Linear Ablation of Composites</td>
<td>258</td>
</tr>
<tr>
<td>10.6.3</td>
<td>Effect of a Pressure Head on the Rate of Linear Ablation of Composites</td>
<td>259</td>
</tr>
<tr>
<td>10.6.4</td>
<td>Particle-Reinforced Composites</td>
<td>261</td>
</tr>
<tr>
<td>10.7</td>
<td>Heat Balance on Ablative Surface</td>
<td>262</td>
</tr>
<tr>
<td>10.8</td>
<td>Criteria of Efficiency of Composites</td>
<td>263</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>266</td>
</tr>
</tbody>
</table>

11	Thermal Stresses in Composite Structures Under High Temperatures	269
11.1	Axisymmetric Problems of Thermomechanics for Composites Under High Temperatures	269
11.1.1	Basic Equations	269
11.1.2	Constitutive Relations	270
11.1.3	Functions of Stresses	272
11.1.4	Boundary Conditions	272
11.1.5	Statement of the Axisymmetric Problem in Terms of Stresses	273
11.1.6	The Problem Statement in Terms of Displacements	273
11.2	Thermal Stresses in Composite Structures of Heat-Energetic Systems	275
11.2.1	External Shell of the Inlet of STJE	275
11.2.2	A Shell of a Central Body of STJE Inlet	283
11.3 Thermal Stresses in Thermoprotective Structures
 Under Gas-Dynamical Heating ... 287
 11.3.1 The Problem Statement 287
 11.3.2 Numerical Analysis of the Problem 290

11.4 Thermal Stresses in Thermoprotective Structures
 Under Aerodynamical Heating ... 294
 11.4.1 The Problem Statement 294
 11.4.2 Computed Results ... 296

11.5 Thermal Stresses in Composites Under Local Technological Heating ... 301
 11.5.1 Statement of the Problem 302
 11.5.2 Computed Results ... 302

References .. 306

12 Mechanics of Composite Thin-Walled Shells Under High Temperatures ... 309
 12.1 General Equations for Thin-Walled Ablative Shells
 Under High Temperatures ... 310
 12.1.1 Model of a Multilayer Composite Shell 310
 12.1.2 Constitutive Relations of Ablative Composites 312
 12.1.3 Boundary and Initial Conditions 315

 12.2 Main Assumptions for Thin-Walled Ablative Shells 317

 12.3 Peculiarities of the Theory of Composite Shells
 Under High Temperatures ... 318
 12.3.1 Mechanical Equations for Thin-Walled Ablative Shells 318
 12.3.2 Strains and Stresses in a Multilayer Ablative Shell 319
 12.3.3 Constitutive Relations for a Multilayer Ablative Shell 321
 12.3.4 The Problem Statement on Heat-Mass-Transfer and Deforming for a Multilayer Ablative Shell 322

 12.4 Cylindrical Composite Shells Under High Temperatures 324
 12.4.1 Basic Equations ... 324
 12.4.2 Computed Results ... 325

 12.5 Failure of Composite Structures Under High Temperatures 330
 12.5.1 Conditions of the Appearance of Failure 330
 12.5.2 Behavior of a Composite Shell After the Appearance of Failure 332
 12.5.3 Computed Results ... 334
 12.5.4 Experimental Results 336

References .. 336
13 Finite-Element Method for Modeling of Thermomechanical Phenomena in Composite Shells Under High Temperatures

13.1 Variational Statements of Problems for Composite Shells Under High Temperatures

13.1.1 A Variational Statement of a Space Problem for Ablative Shell Mechanics

13.1.2 The Hellinger–Reissner Variational Principle for a Space Problem

13.1.3 The Hellinger–Reissner Variational Principle for Ablative Shells

13.2 Finite-Element Method for Ablative Composite Shells

13.3 Computational Methods for Modeling of Internal Heat-Mass-Transfer in Ablative Composite Thin-Walled Shells

13.3.1 The General Method Algorithm

13.3.2 The Dimensionless Form of Heat-Mass-Transfer Equation System

13.3.3 The Numerical Solving Algorithm for the Local Problem

13.3.4 The Asymptotic Method of Solving the Heat-Mass-Transfer Problem in Domain V_2

13.3.5 The Numerical Method for Solving the Heat-Mass-Transfer Equations in Domain V_2

13.4 Modeling of Cylindrical Composite Shells Under Local High-Temperature Heating

13.4.1 Initial Data and Loading Parameters

13.4.2 Analysis of Modeling Results of Internal Heat-Mass-Transfer in a Shell

13.4.3 Analysis of Temperature Deformations

13.4.4 Analysis of Results for Displacement U_1

13.4.5 Analysis of Results for Displacement U_2

13.4.6 Analysis of Results for Flexure W of the Shell

13.4.7 Analysis of Results for Rotation Angle γ_1 of the Normal

13.4.8 Analysis of Results for Rotation Angle γ_2 of the Normal

13.4.9 Analysis of Results for Stress σ_1

13.4.10 Analysis of Results for Stress σ_2

13.4.11 Analysis of Results for Stress σ_{12}

13.4.12 Analysis of Results for Stress σ_{13}

13.5 Modeling of Axisymmetric Composite Shells Under Local High-Temperature Heating

13.5.1 Initial Data and Loading Parameters

13.5.2 Analysis of Results for Displacements U_1 and U_2

13.5.3 Analysis of Results for Flexure W
13.6 Modeling of Composite Plates Under Local High-Temperature Heating .. 403
13.6.1 Initial Data and Loading Parameters 403
13.6.2 Analysis of Results for Displacement U_1 403
13.6.3 Analysis of Results for Flexure W 407
13.6.4 Analysis of Results for Rotation Angle γ_2
 of the Normal .. 407
References ... 414

14 Methods of Experimental Investigation of High-Temperature
Properties of Composite Materials 417
14.1 Determination of Density Under Heating 417
14.2 Determination of Thermal Characteristics Under Heating 418
 14.2.1 Experimental Device 418
 14.2.2 Determination of Thermoconductivity 419
 14.2.3 Determination of Heat Conductivity 421
14.3 Determination of Gas Permeability 422
14.4 Determination of Heat Deformations Under Heating 423
14.5 Determination of Strength and Elastic Modulus
 of Composites Under High Temperatures 424
14.6 Gas-Dynamical Testing of Composites 427
References ... 429

Index .. 431
Thermomechanics of Composite Structures under High Temperatures
Dimitrienko, Y.I.
2016, XXVII, 434 p. 256 illus., 222 illus. in color., Hardcover
ISBN: 978-94-017-7492-5