Contents

Part I Conditional QTL Mapping and Their Applications to Wheat Breeding and Cultivation

1. **Concept and Research Contents of Conditional QTL Mapping**
 - 1.1 Concept of Conditional QTL and Differences Between the Conditional QTL and Unconditional QTL 3
 - 1.1.1 Concept of Conditional QTL Mapping 3
 - 1.1.2 Differences Between the Conditional QTL and Unconditional QTL 4
 - 1.2 Contents of Conditional QTL Analysis 5
 - 1.2.1 Conditional QTL Mapping for Developmental Dynamic Genetic Effects 5
 - 1.2.2 Conditional QTL Mapping for Associated Traits Genetic Effects 9
 - 1.2.3 Conditional QTL Mapping for Agronomic Measure Coupling Genetic Effects 11
 - References ... 13

2. **Conditional QTL Mapping of Major Quality Traits**
 - 2.1 Conditional QTL Mapping for Protein Dynamic Accumulation Pattern in Wheat Grain 15
 - 2.1.1 Materials and Methods 15
 - 2.1.2 Result and Analysis 17
 - 2.1.3 Comparison with Previous Researches 20
 - 2.2 Conditional QTL Mapping for Developmental Behavior of Total Starch and Its Components Content in Wheat Grain 24
 - 2.2.1 Materials and Methods 24
 - 2.2.2 Result and Analysis 26
 - 2.2.3 Comparison of the Results with Ones of Previous Studies 38
2.3 Conditional QTL Mapping for Protein and Starch Interaction in Wheat Grain ... 40
 2.3.1 Materials and Methods 40
 2.3.2 Result and Analysis 43
 2.3.3 Comparison of the Results with Ones of Previous Studies ... 48

2.4 Conditional QTL Mapping for Sedimentation Values on Seven Quality Traits in Common Wheat 49
 2.4.1 Materials and Methods 50
 2.4.2 Result and Analysis 51
 2.4.3 Comparison of the Results with the Previous Studies ... 58

2.5 Genetic Analysis of Wheat Four Whiteness Conducted Through Conditional and Unconditional QTL Mappings 58
 2.5.1 Materials and Methods 59
 2.5.2 Result and Analysis 61

2.6 Epistatic Effects of Unconditional and Conditional QTL Mapping of Flour Whiteness 66
 2.6.1 Comparison of the Results with the Previous Studies ... 68

2.7 Conditional QTL Mapping for Wheat Seed Protein-Fraction Contents at Different Developmental Stages 70
 2.7.1 Materials and Methods 70
 2.7.2 Result and Analysis 72
 2.7.3 Comparison of the Results with the Previous Studies ... 85

References ... 86

3 Conditional QTL Mapping of Wheat Main Yield Traits 89
 3.1 Conditional QTL Mapping for Wheat Canopy Traits Under Two Nitrogen Application Levels 89
 3.1.1 Materials and Methods 90
 3.1.2 Result and Analysis 91
 3.1.3 Comparison of the Results with the Previous Studies ... 98

 3.2 Conditional QTL Mapping for Plant Height at Different Developmental Stages 98
 3.2.1 Materials and Methods 99
 3.2.2 Result and Analysis 100
 3.2.3 Comparison of the Results with Ones of Previous Studies ... 105

 3.3 Conditional QTL Mapping for Wheat Spike Dry Weight and Thousand-Kernel Weight at Different Developmental Stages ... 106
3.3.1 Materials and Methods ... 106
3.3.2 Result and Analysis ... 108
3.3.3 Comparison of the Results with Previous Studies 119

3.4 Conditional QTL Mapping for Wheat Kernels Weight per Spike at Different Developmental Stages 120
3.4.1 Materials and Methods ... 120
3.4.2 Result and Analysis ... 121
3.4.3 Comparison of the Results with Ones of Previous Studies ... 126

3.5 Conditional QTL Mapping for Wheat Grain Yield per Plant at Different Developmental Stages 126
3.5.1 Materials and Methods ... 127
3.5.2 Result and Analysis ... 127
3.5.3 Comparison of the Results with Ones of Previous Studies ... 132

3.6 Conditional QTL Mapping for Wheat Kernel Weight-Related Traits in Multiple Genetic Background 133
3.6.1 Materials and Methods ... 133
3.6.2 Result and Analysis ... 135
3.6.3 Comparison of the Results with the Previous Studies ... 139

3.7 Conditional QTL Mappings Among Three Key Yield Components in Common Wheat 144
3.7.1 Materials and Methods ... 145
3.7.2 Result and Analysis ... 146
3.7.3 Comparison of the Results with the Previous Studies ... 161

3.8 Conditional QTL Mapping for Yield and Its Three Components in Common Wheat 162
3.8.1 Results of Conditional QTL Analysis on the Yield and Main Yield Components 162
3.8.2 Result and Analysis ... 163
3.8.3 Comparison of the Results with Previous Studies ... 167

References ... 168

4 Roles of Conditional QTL in Crop Breeding and Cultivation ... 173
4.1 Applications of Conditional QTL Mapping to Crop Molecular Breeding ... 173
4.2 Applications of Conditional QTL Mapping to Crop Molecular Cultivation ... 174
4.3 Issues and Application Prospects of Conditional QTL Analysis ... 175

References ... 176
Part II Molecular Marker-Assisted Breeding in Wheat

5 The Concept and Research Progress of MAS

5.1 Concept and Importance of Molecular Marker-Assisted Breeding

5.1.1 The Concept and Features of MAS

5.1.2 The Importance of MAS

5.2 Research Progress of the Molecular Marker-Assisted Breeding

5.2.1 International Research Progress of Molecular Marker-Assisted Breeding

5.2.2 Inland Research Progress of Molecular Marker-Assisted Breeding

References

6 Exploration of Molecular Markers and Creation of Molecular Breeding Elements

6.1 Exploration of Molecular Markers

6.1.1 Development Methods of Molecular Markers

6.1.2 Types and Features of Molecular Markers

6.1.3 The Widely Used Molecular Markers and Their Development Methods

6.1.4 DNA Markers Based on Restriction Enzyme Digestion and PCR

6.1.5 DNA Markers Based on Single Nucleotide Polymorphisms (SNP)

6.2 Examples of Molecular Markers’ Development

6.2.1 The Detection Primers of Molecular Marker Closely Linked with the Main QTL of Wheat Spike Length and Its Application

6.2.2 Development of Molecular Marker QGW4B.4-CAPS Related Thousand Kernel Weight

6.2.3 Development of Molecular Marker QGW6A-232 CAPS Related to Thousand Kernel Weight

6.3 Creation and Application of Molecular Breeding Elements with Superior QTL Allele

6.3.1 Clarifying the Implication of Negative and Positive Values of QTL Additive

6.3.2 Determine the Source of Favorable QTL Gene

6.3.3 Creating the Breeding Element

6.3.4 Obtaining the Molecular Marker of Breeding Elements and Its Application

References
7 The Technology Roadmap by MAS

7.1 The Technical Route of Many Loci by MAS in Whole Course of Conventional Breeding

7.1.1 Selecting the Parents and Arranging the Combinations According to Gene/QTL Presence or Absence and Recombination

7.1.2 Selecting the F1 Combinations and Determining the Population of F2 Generation

7.1.3 Selecting the Good Lines According to Track the Aiming Gene/QTL and Phenotype Identification

7.1.4 Identification Strains with the Aiming Gene/QTL

7.2 The Technology Route of Gene/QTL Transferring by MAS in Backcross Breeding

7.3 The Technology Route of Gene/QTL Pyramiding by MAS in Step-Cross Breeding

7.4 The Technology Roadmap of Breeding by Design Using MAS

8 Molecular Markers of Yield Traits and Their Application

8.1 Molecular Markers of Yield Traits

8.1.1 Molecular Markers of Wheat Yield Obtained by QTL Mapping

8.1.2 Molecular Markers Used Better in Breeding for Wheat Yield

8.2 The Applications of Molecular Markers Relating with Yield Traits

8.2.1 The Application of Molecular Markers Related Grain Number

8.2.2 Functional Identification of the Markers Hap-6A-G/A on Wheat Grain Weight

8.2.3 Selecting the Grain Weight by MAS Using the Markers Hap-6A-P1/P2

8.2.4 The Application of Spike Length Gene by MAS

8.2.5 The Application of Other Markers with Yield-Related Traits

References

9 Molecular Markers of Quality Traits and Their Applications

9.1 Molecular Markers of Quality Traits

9.1.1 Molecular Markers of Quality Traits by QTL Mapping

9.1.2 The Better Molecular Markers Used in Breeding for Wheat Quality
9.2 The Applications of Molecular Markers Relating with Quality Traits

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2.1 Molecular Markers of Yellow Pigment and Its Application</td>
<td>266</td>
</tr>
<tr>
<td>9.2.2 Molecular Markers of HMW-GS and Its Application</td>
<td>273</td>
</tr>
<tr>
<td>9.2.3 Molecular Markers of Grain Protein Content and Grain Hardness and Their Applications</td>
<td>275</td>
</tr>
<tr>
<td>9.2.4 Molecular Markers of PPO Gene and Their Application</td>
<td>275</td>
</tr>
<tr>
<td>9.2.5 Molecular Identification of Wheat Quality of Shannong 20</td>
<td>276</td>
</tr>
</tbody>
</table>

References

- Page 277

10 Molecular Markers of Physiological Traits and Their Applications

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Molecular Markers of Physiological Traits</td>
<td>281</td>
</tr>
<tr>
<td>10.1.1 Molecular Markers Obtained by QTL Mapping of Physiological Traits</td>
<td>281</td>
</tr>
<tr>
<td>10.1.2 The Better Molecular Markers Used in Breeding for Wheat Physiological Traits</td>
<td>285</td>
</tr>
<tr>
<td>10.2 The Applications of Molecular Markers Relating with Physiological Traits</td>
<td>285</td>
</tr>
<tr>
<td>10.2.1 The Application of Molecular Markers of Vernalization</td>
<td>290</td>
</tr>
<tr>
<td>10.2.2 The Application of Molecular Markers of Photoperiod Genes</td>
<td>291</td>
</tr>
<tr>
<td>10.2.3 The Application of Molecular Markers of Dwarfing Genes</td>
<td>291</td>
</tr>
<tr>
<td>10.2.4 The Application of Molecular Markers of Preharvest Resistance</td>
<td>292</td>
</tr>
<tr>
<td>10.2.5 The Application of Other Markers of Physiological Traits</td>
<td>293</td>
</tr>
</tbody>
</table>

References

- Page 293

11 Molecular Markers of Resistance Traits and Their Applications

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Molecular Markers of Resistance Traits.</td>
<td>295</td>
</tr>
<tr>
<td>11.1.1 Major QTLs of Root Length and Coleoptile Length Under Drought</td>
<td>296</td>
</tr>
<tr>
<td>11.1.2 Major QTLs Under Heavy Metal Stress</td>
<td>296</td>
</tr>
<tr>
<td>11.1.3 Major QTLs of Adult-Plant Powdery Mildew Resistance</td>
<td>296</td>
</tr>
<tr>
<td>11.1.4 Major QTLs of Preharvest Resistance</td>
<td>296</td>
</tr>
</tbody>
</table>

References

- Page 296
11.1.5 Molecular Markers Reported for Wheat Resistance Traits .. 296
11.2 The Applications of Molecular Markers Relating with Resistance Traits 300
 11.2.1 The Application of Molecular Markers of Rust Resistance 300
 11.2.2 The Application of Molecular Markers of Scab (Fusarium Head Blight) 305
References .. 318