Contents

1 Gas Explosion Technique Principles and Biomass Refining Pandect .. 1
 1.1 Gas Explosion Technical Overview 1
 1.1.1 History of Gas Explosion Technique 1
 1.1.2 Technical Classification of Gas Explosion 3
 1.1.3 Latest Developments of Gas Explosion Technique . 5
 1.2 Biomass Refinery and Gas Explosion Technology 12
 1.2.1 Biomass Concept and Biomass Refining 12
 1.2.2 Lignocellulosic Biomass Recalcitrance to Degradation . . 13
 1.2.3 Effective Methods to Expose Cellulose in Cell Wall by Physicochemical Pretreatments 14
 1.2.4 Advantages of Steam Explosion-Derived Biomass Refining ... 15
 1.3 Foreground and Prospect ... 17
 1.3.1 Preface .. 17
 1.3.2 Cognition of Biomass Supermolecule Structure and Necessity of Selective Structural Deconstruction .. 17
 1.3.3 Analysis of Biomass Recalcitrance and Breaking Pathways ... 19
 1.3.4 Changes of Biomass Mechanical Properties During Refining Process 19
 1.3.5 Thermodynamics and Dynamics During Biomass Refining Processes 20
 1.3.6 Basis of Biomass Engineering Science 21
 References .. 23
2 Principle of Gas Explosion Technology

2.1 The Main Parameters Affecting the Gas Explosion Process

2.1.1 Overview

2.1.2 Effect of Material Parameters on Gas Explosion

2.1.3 Effect of Operating Parameters on Gas Explosion

2.1.4 Effect of Equipment Parameters on the Gas Explosion

2.1.5 Relationship Between Product Parameters and Gas Explosion

2.2 Multi-scale Modeling of Biomass Pretreatment for Steam Explosion Condition Optimization

2.2.1 Overview

2.2.2 Multi-scale Model Eduction in the Instantaneous Decompression Stage of Steam Explosion

2.2.3 Multi-scale Model Connotation

2.2.4 Establishing a Novel Severity Factor on the Basis of Chip Size, Discharge Port Area, and Moisture Content

2.3 Mechanisms of the Physical and Chemical Coupling Effects of Gas Explosion

2.3.1 Overview

2.3.2 Effects of SE on Degradation of Hemicellulose and Lignin

2.3.3 Effects of SE on Pore Distribution of Straw

2.3.4 Effects of SE on Permeability of Straw

2.3.5 Effects of SE on EHY of Straw

2.4 Dissolution Thermodynamics of the Degradation Products of Steam-Exploded Straw

2.4.1 Overview

2.4.2 Effects of Temperature on the Dissolution Rate of Degradation Products

2.4.3 Effects of LSR on the Dissolution Rate of Degradation Products

2.4.4 Effects of Ionic Strength on the Dissolution Rate of Degradation Products

2.4.5 Effects of pH on the Dissolution Rate of Degradation Products

2.4.6 Optimal Dissolution Conditions for Sugars and Phenolic Compounds

2.4.7 Dissolution Thermodynamic Principles for Degradation Products in SE
2.5 Formation Kinetics of Potential Fermentation Inhibitors in a Steam Explosion Process of Corn Straw

2.5.1 Overview

2.5.2 Determination of Potential Fermentation Inhibitors in Steam Explosion Hydrolysates

2.5.3 Yields of Inhibitors at Different Steam Explosion Conditions

2.5.4 Dynamic Parameters and Yield Equations of Inhibitors in Steam Explosion Process

2.6 Analysis of Energy Consumption on Steam Explosion Process

2.6.1 Overview

2.6.2 The Composition of Steam Explosion Energy Consumption

2.6.3 Calculation Formulas for Each Part of Energy

2.6.4 Experiment Design and Data Processing

2.6.5 Relationship Between the Ratio of Tank Height to Diameter, Loading Coefficient, Initial Moisture Content of Materials, Holding Temperature, and Total Energy Consumption

2.6.6 Energy Analysis of Steam Explosion Process

References
4 Process Development of Gas Explosion

4.1 Process Development of Gas Explosion Technology

4.1.1 Overview of Gas Explosion Technology

4.1.2 Iogen Steam Explosion Technology

4.1.3 Stake Steam Explosion Technology

4.1.4 Low-Pressure and Non-pollution Steam Explosion Technology

4.1.5 In Situ Gas Explosion Technology

4.1.6 In Situ Multistage Flashing and Steam Explosion Drying Technology

4.1.7 Steam Explosion and Carding Technology

4.2 Process Development of Eco-industrialization of Steam-Exploded Materials

4.2.1 Biomass Resource and Its Distribution

4.2.2 Collection and Transportation of Biomass

4.2.3 Properties of Lignocellulosic Materials

4.2.4 Utilization Status and Existing Problems of Lignocellulose

4.2.5 Necessity of Lignocellulose Refinery

4.2.6 Refinery of Lignocellulosic Materials

4.2.7 Process Integration of Steam Explosion Technologies

4.2.8 Examples of Ecological Development of Multi-component Solid Materials

5 Characterization and Research Methods of Gas-Exploded Materials

5.1 Structural Morphology Characterization of Gas-Exploded Materials

5.1.1 Length Measurement of Fibrocytes

5.1.2 Research of Fiber Roughness and Weight Factor

5.1.3 Microscope Characterization

5.1.4 Scanning Electron Microscopy (SEM) Characterization

5.1.5 Transmission Electron Microscope (TEM)

5.1.6 Atomic Force Microscopy (AFM)
5.1.7 Environmental Scanning Electron Microscope (ESEM) .. 204
5.1.8 X-ray Diffraction (XRD) Characterization ... 206
5.1.9 Molecular Weight Determination ... 206
5.1.10 Degree of Polymerization Determination ... 206

5.2 Determination of Components of Gas-Exploded Materials 207
5.2.1 Determination of Cellulose Content ... 207
5.2.2 Lignin Content Determination ... 208
5.2.3 Hemicellulose Content Determination .. 208
5.2.4 Extract Content Determination ... 209
5.2.5 Non-fiber Cell Content Determination .. 209
5.2.6 Protein Content Determination ... 209
5.2.7 Wax Content Determination .. 209
5.2.8 Lipid Content Determination .. 210
5.2.9 Ash Content Determination .. 210
5.2.10 Moisture Content Determination .. 210
5.2.11 Flavonoid Content Determination ... 210
5.2.12 Pectin Content Determination ... 210
5.2.13 Tannin Content Determination ... 211

5.3 Determination of the Active Groups in Gas-Exploded Materials 211
5.3.1 Determination of Methoxyl Group Content .. 211
5.3.2 Determination of Hydroxyl Content .. 211
5.3.3 Determination of Carboxyl Content .. 212
5.3.4 Simultaneous Determination of Carboxyl and Phenolic Hydroxyl 212

5.4 Particle Properties Characterization of Gas-Exploded Materials 213
5.4.1 Particle Size Analysis ... 213
5.4.2 The Application of Fractal Dimension in the Particle Characterization 214

5.5 Interface Characterization Performance of Gas-Exploded Materials 215
5.5.1 Determination of the Specific Surface Area ... 215
5.5.2 The Characterization of Interfacial Tension ... 215
5.5.3 Characterization of Contact Angle .. 216

5.6 Characterization of Porous Properties of Gas-Exploded Materials 218
5.6.1 Characterization of Pore Size Distribution ... 218
5.6.2 Characterization of Permeability Coefficient ... 219
5.6.3 Characterization of Other Properties of Porous Media 219
5.7 Characterization of Biomechanical Property of Gas-Exploded Materials .. 219
 5.7.1 Characterization of Hydrogen Content 219
 5.7.2 Tensile Strength .. 220
 5.7.3 Compressive Strength 220
 5.7.4 Bending Property .. 220
 5.7.5 Shear Strength .. 220
 5.7.6 Hardness and Impact Toughness 220
5.8 Characterization of Wet and Dry Performance of Gas-Exploded Materials 221
 5.8.1 The Moisture Content and Shrinkage 221
 5.8.2 The Existing State of Water 221
 5.8.3 Fiber Saturation Point 222
5.9 Characterization of Physicochemical Properties of Gas-Exploded Materials 222
 5.9.1 Chemical Bond Energy 222
 5.9.2 Thermodynamic Energy 222
 5.9.3 Enthalpy Value .. 223
 5.9.4 Specific Heat Capacity 223
 5.9.5 Thermal Conductivity 223
5.10 Rheological Characterization of Gas-Exploded Materials ... 224
References .. 224

6 Applications of Gas Explosion in Biomass Refining 227
 6.1 Applications of Gas Explosion in Food Industry 227
 6.1.1 Processing of Fruit and Vegetable Residue 227
 6.1.2 Meat Residue Processing 229
 6.1.3 Marine Products Processing 235
 6.1.4 Food Processing .. 239
 6.1.5 Roughage Processing 239
 6.2 Application of Gas Explosion Technology in Pharmaceutical Industry ... 247
 6.2.1 Problems in Processing and Extraction Process of Medicinal Plants 247
 6.2.2 Gas Explosion Enhancing Bioactive Ingredients Extraction from Traditional Chinese Medicines ... 250
 6.2.3 Gas Explosion Processing of Traditional Chinese Medicines ... 260
 6.2.4 Gas Explosion Technology Focused Ecological Industry of Medicinal Plants 270
6.3 Application of Gas Explosion Technology in Bioenergy .. 279
6.3.1 Pretreatment of Feedstock in Bioenergy ... 279
6.3.2 Advantages of Gas Explosion for Bioenergy Feedstock Pretreatment 280
6.3.3 Typical Applications of Gas Explosion in Bioenergy .. 281
6.4 The Applications of Steam Explosion Technology in Biomaterial Field 286
6.4.1 Natural Textile Fiber Extraction Using Steam Explosion Technology 287
6.4.2 Preparation of Natural Cellulose Nanofiber by Steam Explosion 298
6.4.3 Wood-Based Panels Made by Steam Explosion Corn Straw ... 300
6.4.4 Dissolving Pulp Produced by Steam-exploded Straw .. 302
6.4.5 Polyurethane Foam Produced by Steam-exploded Straw Liquidation 305
6.4.6 Protein Fiber Processing ... 311
6.5 Application of Steam Explosion Technology in Chemical Industry 317
6.5.1 Oxalic Acid .. 318
6.5.2 Furfural ... 320
6.5.3 Acetylpropionic Acid ... 323
6.5.4 Xylooligosaccharide/Xylose/Xylitol ... 326
6.5.5 Citric Acid ... 328
6.5.6 Xanthan Gum ... 330
6.5.7 Phenolic Acids. ... 332
6.5.8 Silicon Dioxide .. 336
6.5.9 Chemical Production Examples Based on Steam Explosion Technology 338
6.6 Application of Steam Explosion Technology in Environmental Protection 339
6.6.1 Damage and Management of Solid Wastes .. 340
6.6.2 Organic Fertilizer Manufacturing .. 344
6.6.3 Application of Steam Explosion in Papermaking Industry ... 346
6.6.4 Environmental Materials Manufactured with Steam-Exploded Straw 353
References .. 358
Gas Explosion Technology and Biomass Refinery
Chen, H.
2015, XIII, 364 p. 158 illus., 115 illus. in color., Hardcover
ISBN: 978-94-017-7412-3