Contents

1 Introduction .. 1
 1.1 Stochastic Process Variations in Deep-Submicron CMOS 1
 1.2 Remarks on Current Design Practice 5
 1.3 Motivation .. 13
 1.4 Organization of the Book 14
 References .. 15

2 Random Process Variation in Deep-Submicron CMOS 17
 2.1 Modeling Process Variability 19
 2.2 Stochastic MNA for Process Variability Analysis 23
 2.3 Statistical Timing Analysis 27
 2.3.1 Statistical Simplified Transistor Model 29
 2.3.2 Bounds on Statistical Delay 31
 2.3.3 Reducing Computational Complexity 33
 2.4 Yield Constrained Energy Optimization 37
 2.4.1 Optimum Energy Point 38
 2.4.2 Optimization Problem 40
 2.5 Experimental Results 41
 2.6 Conclusions .. 49
 References .. 50

3 Electrical Noise in Deep-Submicron CMOS 55
 3.1 Stochastic MNA for Noise Analysis 56
 3.2 Accuracy Considerations 59
 3.3 Adaptive Numerical Integration Methods 62
 3.3.1 Deterministic Euler–Maruyama Scheme 63
 3.3.2 Deterministic Milstein Scheme 64
 3.4 Estimation of the Noise Content Contribution 65
 3.5 Experimental Results 67
 3.6 Conclusions .. 80
 References .. 81
4 Temperature Effects in Deep-Submicron CMOS

4.1 Thermal Model

4.2 Temperature Estimation

4.3 Reducing Computation Complexity

4.3.1 Modified Runge–Kutta Solver

4.3.2 Adaptive Error Control

4.3.3 Balanced Stochastic Truncation Model

4.4 System Level Methodology for Temperature Constrained Power Management

4.4.1 Overview of the Methodology

4.4.2 Temperature-Power Simulation

4.5 Experimental Results

4.6 Conclusions

References

5 Circuit Solutions

5.1 Architecture of the System

5.2 Circuits for Active Monitoring of Temperature and Process Variation

5.2.1 Die-Level Variation Monitoring Circuits

5.2.2 Detector and Interface Circuit

5.2.3 Temperature Monitor

5.3 Characterization of Process Variability Conditions

5.3.1 Optimized Design Environment

5.3.2 Test-Limit Updates and Guidance

5.4 Experimental Results

5.5 Conclusions

References

6 Conclusions and Recommendations

6.1 Summary of the Results

6.2 Recommendations and Future Research

References

Appendix

About the Author

Index
Stochastic Process Variation in Deep-Submicron CMOS Circuits and Algorithms
Zjajo, A.
2014, XIX, 192 p. 46 illus., Hardcover
ISBN: 978-94-007-7780-4