Contents

Part I Basics and Fundamentals

1 Ray Optics, Wave Optics and Imaging System Design
 1.1 Ray Optics ... 4
 1.2 Reflection, Refraction and Propagation of Light 5
 1.3 Matrix Formulation of Ray Optics 10
 1.4 Wave Optics ... 12
 1.5 Helmholtz Equation and Its Consequences 14
 1.6 Solution of Paraxial Plane Wave (Beam Optics) 16
 1.7 Characteristics of Plane Waves 18
 1.8 Diffraction of Light and Fourier Optics 20
 1.9 Optical Imaging Systems and Microscopy 24
 1.10 Optical Resolution Limit 28
 1.11 Optical Aberrations: Chromatic, Spherical and Astigmatism 29

Appendix Recommended Reading 31
References ... 31

2 Basics of Electromagnetic Theory for Fluorescence Microscopy
 2.1 Electrostatics and Magnetostatics 33
 2.2 Electromagnetic Theory of Light (Wave Equations) 35
 2.3 Solution of Wave Equation 37
 2.4 Polarization Effects of Light 44
 2.5 Transverse Electromagnetic (TEM) Waves 46

Appendix Recommended Reading 50
References ... 51

3 Electric Field Effects in Optical Microscopy Systems
 3.1 Diffraction and Fourier Optics 53
 3.2 Fresnel and Fraunhofer Diffraction 53
 3.3 System Point Spread Function and Image Formation 56
 3.4 Angular Spectrum Representation for Far Fields 57
 3.5 Field Distribution at the Geometrical Focus 58
 3.6 Field Distribution in Fluorescence Imaging Systems 61
 3.7 Field-Dipole Interaction and the System PSF 65

Appendix Recommended Reading 69
References ... 69

4 Quantum Description of Radiation Field and Optical Microscopy
 4.1 Wave-Particle Duality 71
 4.2 The Concept of Photon 73
 4.3 Basics of Quantum Mechanics 77
 4.4 Field Quantization .. 78
 4.5 Quantum States of Light 82
4.6 Quantum Effects in Microscopy and Imaging

Appendix Recommended Reading

References

5 Molecular Physics of Fluorescent Markers

5.1 Basics of Atomic and Molecular Spectroscopy

5.2 The Molecular Orbital Theory

5.3 Electronic States, Selection Rules and Absorption Spectra

5.4 Fluorescent Markers

Appendix Recommended Reading

References

Part II Advanced Imaging

6 Basics of Fluorescence and Photophysics

6.1 Fluorescence and Phosphorescence

6.2 Absorption and Lambert-Beer's Law

6.3 Kasha's Law, Stokes Shift and Frank-Condon Principle

6.4 Quantum Yield and Lifetime of Fluorescent Markers

6.5 Fluorescence Anisotropy and Polarization

6.6 Common Fluorophores for Biological Imaging

6.7 Static and Dynamic Quenching: Stern-Volmer Equations

6.8 Metastable States and Its Effect on Photobleaching

6.9 Optical Techniques for Photobleaching Reduction

Appendix Recommended Reading

References

7 General Fluorescence Imaging Techniques

7.1 Fluorescence Lifetime Imaging

7.2 Förster's Resonance Energy Transfer (FRET)

7.3 Second Harmonic Generation

7.4 Fluorescence Correlation Spectroscopy

Appendix Recommended Reading

References

8 Multiphoton Fluorescence Microscopy

8.1 Perturbation Theory

8.2 Calculation of Transition Probabilities

8.3 Multiphoton Absorption in Fluorescence Microscopy

8.4 Selection Rules for Multiphoton Absorption Process

Appendix Recommended Reading

References

9 Super-resolution Fluorescence Microscopy

9.1 Total Internal Reflection Fluorescence (TIRF) Microscopy

9.2 4pi Laser Scanning Fluorescence Microscopy

9.3 Localization Based Super-resolution Fluorescence Microscopy

9.4 SPIM Microscopy and Its Super-resolution Analogue (IML-SPIM)

9.5 Structured Illumination Microscopy

9.6 Stimulated Emission Depletion (STED) Microscopy

9.7 Spatial Filtering Technique based Multi-functional Fluorescence Microscopy

Appendix Recommended Reading

References
10 Image Reconstruction for Fluorescence Microscopy

- **10.1 Image Formation in Fluorescence Microscopy** .. 189
- **10.2 Maximum Likelihood (Richardson-Lucy) Method** ... 191
- **10.3 Maximum A-posteriori Method** ... 193
- **10.4 Designing Potential Function** ... 196
- **10.5 Information Divergence Test (Csiszár)** .. 197
- **10.6 Algorithm Testing and Data Acquisition** ... 198

Appendix Recommended Reading ... 201

References ... 202

11 Future Perspective of Fluorescence Microscopy

- **11.1 Fluorophore Engineering** .. 203
- **11.2 New Scanning Systems, Multicolor Imaging and Single Photon Detectors** 204
- **11.3 Emerging Imaging Techniques and Superresolution Microscopy** 205
- **11.4 Depth Imaging in Fluorescence Microscopy** ... 205
- **11.5 High Throughput Imaging** .. 206
- **11.6 Development of Analysis Software** .. 206
- **11.7 Onchip Microscopy Techniques** ... 206

References ... 207

Appendix A Selected Mathematical Formula ... 209

- **A.1 Taylor Series Expansion for Function of One Variable** 209
- **A.2 Gradient and Laplacian Operators** ... 209

Appendix B Wave Impedance, Fourier Transform and Modes of Light 213

- **B.1 Wave Impedence** ... 213
- **B.2 Fourier Transform** ... 214
- **B.3 Higher Order Modes of Light** .. 215

Appendix C Bessel Table and Dyes for Super-resolution Imaging 217
Fundamentals of Fluorescence Microscopy
Exploring Life with Light
Mondal, P.P.; Diaspro, A.
2014, XV, 218 p. 140 illus., 55 illus. in color., Hardcover