Contents

Part I The Phenomenon and the Problem of Turbulence

1 The Phenomenon of Turbulence as Distinct from the Problem of Turbulence 3
 1.1 Major Qualitative Universal Features of Turbulent Flows 6

2 The Problem of Turbulence as Distinct from the Phenomenon of Turbulence 9
 2.1 On Physics and Mathematics of Turbulence ... 12

3 What Equations Describe Turbulence Adequately? .. 15
 3.1 Navier–Stokes Equations .. 16
 3.1.1 On Boundary Conditions .. 18
 3.2 Large Re, Zero Viscosity Limit and Relevance of Euler Equations 18
 3.3 Averaged Equations, Filtering, Decompositions and Similar Approaches/Issues 19
 3.3.1 On the Utility of Various Decompositions .. 22
 3.4 Eulerian Versus Lagrangian Representations ... 24
 3.5 Final Remarks .. 26

Part II Issues of Paradigmatic Nature I: Origins and Nature of Turbulence

4 Origins of Turbulence .. 31
 4.1 Instability .. 32
 4.2 Transition to Turbulence Versus Routes to Chaos .. 33
 4.3 Many Ways of Creating (Arising/Emerging) Turbulent Flows 34

5 Nature of Turbulence .. 37
 5.1 Turbulence is Only Apparently Random .. 39
 5.2 Limitations of Statistical Methods .. 41
 5.2.1 Statistical Theories .. 42
5.2.2 Statistical Methods of Description and Interpretation of the Data from Laboratory, Field and Numerical Experiments .. 45
5.2.3 On Particular Tools—Examples .. 47

6 Additional Issues of Importance Related to the Use of Statistical Methods ... 53
6.1 Interpretation and Validation or What About the Right Results for the Right Reasons or Theories Versus Hard Evidence 54
6.1.1 Interpretation ... 54
6.1.2 Validation or Theories Versus Hard Evidence 57
6.2 Ergodicity and Related ... 61

Part III Issues of Paradigmatic Nature II: Specific Features

7 The N’s of Turbulence .. 67
7.1 Non-integrability ... 67
7.2 Nonlinearity ... 68
7.2.1 Nonlinearity Plus Decompositions Gives Birth to “Cascades” . . 69
7.2.2 Turbulence Is Essentially Rotational and Strongly Dissipative Phenomenon .. 70
7.3 Nonlocality .. 74
7.3.1 Introductory/General Remarks .. 74
7.3.2 A Simple Example .. 77
7.3.3 Direct and Bidirectional Coupling Between Large and Small Scales ... 78

8 Large Reynolds Number Behavior, Symmetries, Universality .. 85
8.1 Inertial Range, the Roles of Viscosity/Dissipation and Related Issues ... 86
8.2 Reynolds Number Dependence and Behavior of Turbulent Flows at Large Reynolds Numbers 91
8.3 Symmetries ... 94
8.4 Universality ... 98
8.4.1 Quantitative Universality ... 99
8.4.2 Qualitative Universality .. 101

9 Intermittency and Structure(s) of and/in Turbulence 105
9.1 Intermittency ... 107
9.1.1 The External Intermittency and Entrainment 108
9.1.2 The Small Scale, Internal or Intrinsic Intermittency 108
9.1.3 Measures/Manifestations of Intermittency 111
9.1.4 On Possible Origins of Small Scale Intermittency 115
9.2 What Is(Are) Structure(s) of Turbulent Flows? What We See Is Real. The Problem Is Interpretation 118
9.2.1 On the Origins of Structure(s) of/in Turbulence 119
9.2.2 How Does the Structure of Turbulence ‘Look’? 120
9.2.3 Structure Versus Statistics .. 124
9.2.4 What Kinds of Statistics Are Most Appropriate
to Characterize at Least Some Aspects for Turbulence
Structure .. 126
9.2.5 Structure(s) Versus Scales and Decompositions 129

Part IV Epilogue

10 On the Status .. 135
 10.1 What Next .. 138
 10.2 What to Do .. 140

11 Appendix. Essential Quotations 143
 11.1 To Preface .. 143
 11.1.1 On Absence of Genuine Theory 143
 11.2 To Chap. 1 .. 146
 11.2.1 On Multitude of “Approaches”; for More See Also
 Chaps. 3 and 9 in Tsinober (2009) 146
 11.3 To Epilogue .. 148
 11.3.1 On the Continuing Diversity of Opinions on What Is
 Important, What Are the Main Questions and Related . 148

References ... 151

Author Index ... 161

Subject Index ... 167
The Essence of Turbulence as a Physical Phenomenon
With Emphasis on Issues of Paradigmatic Nature
Tsinober, A.
2014, XI, 169 p., Hardcover
ISBN: 978-94-007-7179-6