Contents

Part I

1 Hydrodynamics of Rotating Superfluids with Quantized Vortices ... 3

1.1 The Foundation of Landau Theory for Superfluid Hydrodynamics .. 5

1.1.1 The Essence of the Hydrodynamics. Description of the Goldstone Modes ... 5

1.1.2 Landau Scheme of the Conservation Laws. Euler Equation ... 6

1.1.3 Sound Waves in Classical Liquid. Damping of Sound Waves ... 8

1.1.4 Rotational Fluid. Vorticity Conservation. Inertial Mode ... 11

1.1.5 Two-Velocity Hydrodynamics for Superfluid Helium. \vec{v}_n and \vec{v}_s, ρ_n and ρ_s ... 13

1.1.6 First and Second Sound Modes in Superfluid Liquid ... 17

1.1.7 Gross–Pitaevskii Equation for Dilute Bose-Gas. Connection Between Superfluid Hydrodynamics and Microscopic Theory at $T = 0$... 19

1.2 Hydrodynamics of Rotating Superfluids ... 20

1.2.1 Andronikashvili Experiments in Rotating Helium ... 20

1.2.2 Feynman-Onsager Quantized Vortices. Critical Angular Velocities Ω_{C1} and Ω_{C2} ... 22

1.2.3 Vortex Lattice. Nonlinear Elasticity Theory. Vorticity Conservation Law .. 25

1.2.4 Hydrodynamics of Slow Rotations. Hall-Vinen Friction Coefficients β and β' .. 28

1.2.5 Linearization of the Elasticity Theory. Connection Between \vec{v}_s and \vec{u} in Linearized Theory ... 31
1.2.6 Collective Modes of the Lattice. Tkachenko Waves and Lord Kelvin Waves. Melting of the Vortex Lattice 35

1.3 Hydrodynamics of Fast Rotations 40
1.3.1 The Foundation of the Hydrodynamics of Fast Rotations. The Role of Umklapp Processes 40
1.3.2 The System of the Nonlinear Equations for the Hydrodynamics of Fast Rotations 42
1.3.3 Linearized System of Equations of Fast Rotations. The Spectrum and the Damping of the Second Sound Mode. 45

1.4 Opposite Case of a Single Bended Vortex Line for Extremely Slow Rotations (Ω ∼ Ω_C1) 47
1.4.1 Stabilization of the Bending Oscillations by Rotation ... 48
1.4.2 Visualization of the Vortex Lattice in Rotating Superfluid. Packard Experiments 50
1.4.3 Contribution to Normal Density and Specific Heat from Bended Vortex Lines 51

1.5 Experimental Situation and Discussion. How to Achieve the Limit of the Fast Rotations at Not Very High Frequencies in He II–^3^He Mixtures and in Superfluid ^3^He-B .. 52

References .. 54

2 Quantum Crystals. The Search for Supersolidity 57
2.1 Quantum Crystals. Phase-Diagram. The Search for Supersolidity ... 58
2.1.1 Lindemann and de Boer Parameters ... 58
2.1.2 Flow of Zero Vacancies. Andreev–Lifshitz Theory ... 61
2.1.3 Chan Experiments with Rotating Cryostat. The Search for Supersolidity in Solid ^4^He 65

2.2 The Surface Physics of Quantum Crystals. Atomically Smooth and Atomically Rough Surfaces ... 66
2.2.1 The Concept of the Mobile Rough Interface Between Solid ^4^He and Superfluid He-II 67
2.2.2 Growth and Melting Shape of a Crystal ... 68
2.2.3 Melting-Crystallization Waves and Phase Equilibrium on the Mobile Rough Surface 68
2.2.4 Rayleigh Waves on Rough and Smooth Surfaces ... 69
2.2.5 Roughening Transition ... 70

References .. 76
3 Melting-Crystallization Waves on the Phase-Interface Between Quantum Crystal and Superfluid

3.1 The Surface Hydrodynamics for Rough Interface at Low Temperatures

3.1.1 Linear Equations of Surface Hydrodynamics in the Absence of Stationary Surface Flows
3.1.2 The Spectrum of Melting-Crystallization Waves
3.1.3 The Growth Coefficient: Damping of the Melting-Crystallization Waves
3.1.4 The Instability of Superfluid Tangential Flows on the Mobile Phase-Interface
3.1.5 The Spectrum of the Rayleigh Waves on the Rough Surface
3.1.6 The Angles of the Total Internal Reflection: Excitation of the Surface Wave by the Bulk Second Sound Wave

3.2 Surface Hydrodynamics on the Mobile Interface at $T \neq 0$ and in the Presence of 3He Impurities

3.2.1 Equations of the Surface Hydrodynamics at $T \neq 0$ and in the Presence of the Impurities
3.2.2 The Surface Dissipative Function and Kapitza Thermal Resistance
3.2.3 Damping of Melting-Crystallization Waves
3.2.4 Impurity Contribution to the Kapitza Thermal Resistance at Low Temperatures
3.2.5 Cherenkov Emission of the Second Sound Quanta by the Thermal Surface Waves

References

4 Quantum Hydrodynamics of the p-Wave Superfluids with the Symmetry of 3He-A

4.1 Orbital Hydrodynamics of Bosonic and Fermionic Superfluids with the Symmetry of A-phase of 3He

4.1.1 Orbital Hydrodynamics and Collective Modes in Bosonic Regime
4.1.2 Orbital Waves: The Paradox of the Intrinsic Angular Momentum and Anomalous Current in Fermionic Superfluids

4.2 Two Approaches to a Complicated Problem of Anomalous Current in Fermionic (BCS) A-phase

4.2.1 Supersymmetric Hydrodynamics of the A-phase
4.2.2 A Different Approach Based on the Formal Analogy with Quantum Electrodynamics

References
4.2.3 How to Reach the Hydrodynamic Regime \(\omega \tau \ll 1 \) .. 138
4.2.4 The Concept of the Spectral Flow and the Exact Anomaly Cancellation 140
4.2.5 Experimental Situation and Discussion ... 143
References .. 147

Part II

5 Bose–Einstein Condensation and Feshbach Resonance in Ultracold Quantum Gases and Mixtures .. 153
 5.1 BEC in Trapped Bose-Gases ... 154
 5.1.1 Foundation of the Laser Cooling Technique 155
 5.1.2 Evaporative Cooling Technique. Majorana Flops 156
 5.1.3 Different Designs of the Magnetic Traps 158
 5.1.4 BEC in Trapped Ultracold Bosonic Gases 159
 5.1.5 Typical Densities and Numbers of Particles in the Trap 161
 5.1.6 Recalculation of \(T_{\text{C}}^{\text{BEC}} \) from the Free Space on the Trap Geometry in Confinement Potential ... 162
 5.1.7 Metastability of Trapped Bose- and Fermi-Gases 163
 5.2 Experiments on Feshbach Resonance in Ultracold Quantum Gases and Mixtures 164
 5.2.1 The General Expression for the s-Wave Scattering Amplitude 166
 5.2.2 Broad Feshbach Resonance .. 167
 5.2.3 Resonant Approximation for Broad Feshbach Resonance 167
 5.2.4 Fermi-Gas with Attraction 168
 5.2.5 Attractive-U Hubbard Model 174
 5.2.6 Narrow Feshbach Resonance 175
 5.3 Experiments on Molecular BEC in \(^6\text{Li} \) and \(^{40}\text{K} \) 177
References .. 178

6 Composed Particles, Trios and Quartets in Resonance Quantum Gases and Mixtures. .. 181
 6.1 Two-Particles Pairing and Phase-Separation in Bose-Gas with One or Two Sorts of Bosons 183
 6.1.1 Lattice Model with van der Waals Interaction Between Bosons 184
 6.1.2 Two-Particle \(T \)-Matrix Problem 185
 6.1.3 Thresholds for Extended s-Wave, p-Wave and d-Wave Two-Bosons Pairings. . 186
6.1.4 Bethe–Salpeter Integral Equation for s-Wave Pairing of Two Bosons .. 188
6.1.5 Possibility of p-Wave and d-Wave Pairing of the Two-Bosons .. 192
6.1.6 Total Phase Separation .. 194
6.1.7 Phase Diagram of the System .. 195
6.1.8 Two-Band Hubbard Model for the Two Sorts of Bosons .. 196
6.1.9 Slave-Boson Formulation of the t-J Model. Application to High-T_C Systems .. 198

6.2 Composed Fermions in the Fermi-Bose Mixture with Attractive Interaction Between Fermions and Bosons. .. 200
6.2.1 The Theoretical Model .. 201
6.2.2 Intermediate Coupling Case in 2D .. 201
6.2.3 Bethe–Salpeter Integral Equation .. 202
6.2.4 Crossover (Saha) Temperature .. 203
6.2.5 Three and Four Particles Bound States in the Fermi-Bose Mixture .. 204

6.3 Bound States of Three and Four Resonantly Interacting Particles .. 204
6.3.1 Atom-Molecule Scattering Length for Three Resonantly Interacting Fermions in 3D, Skorniakov-Ter-Martirosian Integral Equation .. 205
6.3.2 Three Resonantly Interacting Bosons in 3D, Efimov Effect .. 207
6.3.3 Three Resonantly Interacting Bosons in 2D .. 210
6.3.4 The Three-Particle Complex $f_{e,b,b}$ in 2D Case .. 212
6.3.5 Dimer–Dimer Scattering for Four Resonantly Interacting Fermions in 3D. Exact Integral Equation for Four-Fermion Problem .. 213
6.3.6 Four Particles Bound States .. 216
6.3.7 Phase Diagram of the Fermi-Bose Mixture in 2D .. 218
6.3.8 Phase Diagram of 2D Bose-Gas .. 218
6.3.9 The Role of the Dimer-Fermion and Dimer–Dimer Scattering Lengths for the Lifetime of the Resonance Fermi-Gas .. 219

References .. 220

7 BCS-BEC Crossover and the Spectrum of Collective Excitations in s-Wave and p-Wave Resonance Superfluids .. 223
7.1 Phase-Diagram of the Resonance Fermi-Gas in 3D and 2D Cases .. 224
7.1.1 Self-Consistent T-Matrix Approximation .. 224
7.1.2 Equation for T_C .. 227
7.1.3 Self-Energy in Dilute BEC Limit .. 228
7.1.4 Phase-Diagram of the Resonance
Fermi-Gas in 3D .. 229
7.1.5 Unitary Limit ... 230
7.1.6 Qualitative Interpretation of the Intermediate Region
of Large Values of $|a/p_F| \gg 1$
($-1 < 1/p_F a < 1$) on the Phase Diagram 231
7.2 Self-Consistent Leggett Theory for $T = 0$ 231
7.2.1 Leggett Equations for Chemical Potential
and Superfluid Gap .. 232
7.2.2 Sound Velocity in BCS and BEC Limits 236
7.2.3 BCS-BEC Crossover for the 2D Resonance
Fermi-Gas ... 237
7.2.4 Gap Spectroscopy in 3D ... 240
7.3 Anderson-Bogoliubov Theory for Collective Excitations 241
7.3.1 Diagrammatic Approach ... 241
7.3.2 The Spectrum of Collective Excitations 244
7.3.3 Landau Critical Velocity .. 245
7.4 Feshbach Resonance and Phase-Diagram for p-Wave
Superfluid Fermi-Gas ... 246
7.4.1 Feshbach Resonance for Fully Polarized
p-Wave Resonance Superfluids ... 247
7.4.2 The Global Phase Diagram of the BCS-BEC
Crossover in Fully Polarized A1-Phase 248
7.4.3 Quasiparticle Energy and Nodal Points
in the A1-Phase .. 249
7.4.4 Leggett Equations for A1-Phase 249
7.4.5 Specific Heat at Low Temperatures $T \ll T_C$
in the A1 phase. Classical and Quantum Limits.
Quantum Critical Point $\mu(T = 0) = 0$ 252
7.4.6 Normal Density in the Three-Dimensional
A1-Phase ... 256
7.4.7 The Spectrum of Orbital Waves
in the Three-Dimensional p-Wave Superfluids
with the Symmetry of A1-Phase .. 258
References ... 261

8 Phase Diagrams and the Physics of Pseudogap
in the Superconductors with Attractive Interaction 263
8.1 Attractive-U Fermionic Hubbard Model 264
8.1.1 Two Critical Temperatures T_C
and T_* in 3D Case .. 264
8.1.2 Weak-Coupling Case ... 265
8.1.3 Strong-Coupling Case .. 265
8.2 Attracting Fermions in 2D .. 266
 8.2.1 Weak-Coupling Case .. 267
 8.2.2 Intermediate-Coupling Case 268
 8.2.3 Strong-Coupling Case 268
8.3 T-matrix Approximation .. 268
 8.3.1 Conditions for T_C 270
 8.3.2 Self-Energy in the First Iteration 270
 8.3.3 Density of States. Correlation Gap 271
 8.3.4 Next Iteration in the T-matrix Scheme 272
 8.3.5 η-Resonance .. 272
8.4 Experimental Predictions of the Model 273
 8.4.1 Resistivity in the State of the Normal Bosonic Liquid 273
 8.4.2 The Fermi-Bose Mixture Model 274
8.5 Space-Separated Fermi-Bose Mixture and Superconductivity
 in Bismuthates BaKBiO ... 275
 8.5.1 Peculiarities of the Local Crystal Structure 275
 8.5.2 Local Electron Structure 276
 8.5.3 Formation of the Fermi-Bose Mixture 279
 8.5.4 Superconductivity in $\text{Ba}_{1-x}\text{K}_x\text{BiO}_3$ 282
 8.5.5 Discussion and Possible Experimental Test
 of the Proposed Model 285
References .. 286

Part III

9 Superconductivity in the Low-Density Electron Systems
 with Repulsion .. 291
 9.1 Kohn–Luttinger Mechanism of Superconductivity
 in Purely Repulsive Fermi-Systems 291
 9.2 Unconventional Superconducting Systems 292
 9.3 3D and 2D Fermi-Gas with Repulsion 293
 9.3.1 3D Fermi-Gas with Repulsion 293
 9.3.2 Triplet p-Wave Pairing 295
 9.3.3 Model-Independent Considerations
 by P. Nozieres ... 296
 9.3.4 Two-Dimensional Case 297
 9.4 Superconductivity in 3D and 2D Hubbard Model
 with Repulsion at Low Electron Density 299
 9.4.1 3D Hubbard Model at Low Density 299
 9.4.2 2D Hubbard Model 301
 9.4.3 Qualitative Phase-Diagram at Low Density in 2D 302
Contents

9.4.4 Superconductivity in 2D Hubbard Model at Larger Electron Densities $n_{\text{el}} \leq 1$ 303

9.4.5 Parquet Solution at Weak-Coupling and Close to Half-Filling 303

9.5 Superconductivity Transitions in the Jelly Model for Coulomb Electron Plasma 305

9.5.1 Cascade of Superconductivity-Transitions in the Dense Electron Plasma 306

9.5.2 The Dilute Electron Plasma .. 306

9.6 Superconductivity and Phase Separation in Shubin–Vonsovsky Model 307

9.6.1 p-Wave Superconductivity in Shubin–Vonsovsky Model at Low Density 308

9.6.2 Localization and Phase Separation in Shubin–Vonsovsky Model at Larger Densities 310

References ... 311

10 Strong T_C Enhancement in Spin-Polarized Fermi-Gas and in Two-Band Superconductors 315

10.1 T_C Enhancement in Spin-Polarized Neutral Fermi-Gas .. 315

10.1.1 3D Spin-Polarized Fermi-Gas .. 316

10.1.2 2D Spin-Polarized Fermi-Gas .. 318

10.1.3 Spin-Polarized Superfluid ^3He .. 319

10.2 T_C Enhancement in Quasi-2D Charged SC in Parallel Magnetic Field 320

10.3 Strong T_C Enhancement in the Two-Band Superconductors .. 324

10.3.1 The Two-Band Hubbard Model with One Narrow Band .. 324

10.3.2 The Kanamori T-Matrix Approximation .. 327

10.3.3 Evaluation of the Self-Energies of Heavy and Light Bands .. 329

10.3.4 Electron Polaron Effect .. 333

10.3.5 Other Mechanisms of Heavy Mass Enhancement .. 335

10.3.6 Anomalous Superconductivity in the Two-Band Model with One Narrow Band 338

References ... 344

11 Fermionic Superfluidity in Three- and Two-Dimensional Solutions of ^3He in ^4He 347

11.1 Bardeen-Baym-Pines Theory for the Solutions of ^3He in ^4He. Direct and Exchange Interactions .. 347

11.1.1 Three-Dimensional Case. Spin Diffusion Measurements .. 349
11.1.2 Two Possible Approaches to the Fermionic Superfluidity in the Solutions 350
11.1.3 Three-Dimensional Fermi-Gas with Attraction 352
11.1.4 Three-Dimensional Fermi-Gas with Repulsion 353
11.2 Two-Dimensional Case. 3He-Submonolayers 354
11.2.1 Surface Andreev Levels 354
11.2.2 Superfluid Thin 4He-Films 355
11.2.3 Spin Susceptibility of 3He-Submonolayers 356
11.2.4 Possibility of the Superfluid Transition in the Two-Dimensional Solutions 357
11.2.5 Two-Dimensional Fermi-Gas with Attraction 359
11.2.6 Two-Dimensional Fermi-Gas with Repulsion 360
11.3 Superfluidity in Polarized Solutions 361
11.3.1 Three-Dimensional Polarized Solutions 361
11.3.2 Two-Dimensional Polarized Solutions 362
11.4 Experimental Situation and Limitations on the Existing Theories 363
11.5 Two-Dimensional Monolayers as a Bridge Between Superfluidity and High-T_c Superconductivity 364
References 365

12 Triplet Pairing and Superfluid Phase-Diagram in Fermi Gas of Neutral Particles and in Superfluid 3He 367
12.1 Fermionic Superfluidity of 6Li in the Magnetic Traps at Ultracold Temperatures 368
12.1.1 s-Wave Pairing in Trapped Fermi-Gas with Exactly Equal Densities of Different Components 369
12.1.2 Triplet p-Wave Pairing in the Disbalanced Case 369
12.1.3 Stability of the System Towards Phase Separation 372
12.1.4 Metastability of the System 372
12.1.5 The Cooper Problem for s-Wave and p-Wave Pairing in Confined Geometry of the Traps 372
12.2 p-Wave Pairing in the Fermi-Bose Mixture of 6Li-7Li with Repulsive Interaction Between the Different Isotopes 373
12.3 Ginzburg–Landau Functional for Triplet Superfluid Fermi Gas and for Superfluid 3He 375
12.3.1 Global Phase Diagram of a Superfluid Fermi Gas with Repulsion and of a Superfluid 3He 376
12.3.2 GL-Functional in the Weak-Coupling Case 376
12.3.3 Exact Evaluation of T_{C1} in Repulsive Fermi Gas Allowing for Higher Orders of Perturbation Theory 378
12.3.4 Strong-Coupling Corrections in a Superfluid
Fermi Gas with Repulsion 380

12.3.5 The Global Minima of the GL-Functional
in Spin-Polarized Superfluid Fermi Gas 384

12.3.6 Critical Temperatures for the Superfluid Transitions
to A1, A2 and B Phases in Spin-Polarized
Fermi Gas ... 385

12.3.7 Strong-Coupling Corrections in Superfluid
Spin-Polarized Fermi Gas 388

12.4 GL-Functional and Global Phase-Diagram
of the 2D Superfluid Fermi Gas with Repulsion 392

References ... 394

13 Spin-Charge Separation and Confinement in Ladder
Systems and in High-T_C Superconductors 397

13.1 Introduction .. 397

13.2 Spin-Charge Separation and Luttinger Liquid
in Doped Spin-Chains 399

13.2.1 1D t-J Model for Doped Spin-Chains 400

13.2.2 Spin-Charge Separation in Doped 1D
Spin-Chains .. 401

13.2.3 The Dressed Green-Function in 1D
Luttinger Liquid 402

13.2.4 The Distribution Function for Interacting Particles
in Luttinger Liquid 403

Luther-Emery Liquid 405

13.3.1 Anisotropic t-J Model 406

13.3.2 Resistivity in Two-Leg Ladders Materials 408

13.3.3 Superconductivity in Ladder Materials 408

13.4 Three-Leg Ladders. Anisotropic t-J Model
for Strong-Coupling Along the Rungs 410

13.4.1 Exact Diagonalization of One Rung Problem 411

13.4.2 Qualitative Phase-Diagram 412

13.4.3 N-leg Ladders 414

13.4.4 The Gap in the Energy Spectrum
for Three-Leg Ladders in Anisotropic Limit 414

13.4.5 Coexistence of Bosonic Luther-Emery Liquid
and Fermionic Luttinger Liquid in Isotropic Limit .. 415

13.4.6 Strongly Interacting Mixture of Spinons
and Holons in High-T_C Superconductors 415

13.5 Superconductivity in Isotropic 2D t-J Model 415

13.5.1 Superconductive Pairing in Overdoped
2D t-J Model ... 416
13.5.2 SC phase-diagram of the 2D Overdoped t-J model 417
13.5.3 Extended s-Wave Pairing for $J > t$ and Low Electron Densities 417
13.5.4 Phase-Separation at Large J/t and Low Electron Density 419
13.5.5 p-Wave Pairing for $J < t$ and Low Electron Densities 419
13.5.6 d-Wave Pairing in the Overdoped 2D t-J Model 420
13.5.7 d-Wave Pairing at Small Hole Densities $x = (1 - n_{el}) / C_28$ 420
13.5.8 Possible Bosonic Region of the Phase-Diagram of the 2D t-J Model in the Underdoped Case 421
13.5.9 String-Like Solution for a Composite Hole 422
13.5.10 The Two-Particle Problem for Composite Holes. Possibility of BCS-BEC Crossover in the d-Wave Channel 423

References .. 424

Part IV

14 The Search for Non-Fermi Liquid Behavior in the Normal State of Low Density Fermion Systems 431
14.1 The Search for Non-fermi Liquid Behavior in 2D Systems at Low Density 431
14.1.1 Singularity in Landau f-function in 2D Low-Density Fermion Systems 433
14.1.2 Temperature Corrections to the Thermodynamic Variables in 2D Fermi-Gas 436
14.2 Antibound State on the Lattice: Manifestation of the Upper Hubbard Band at Low Density 438
14.2.1 The Theoretical Model .. 440
14.2.2 T-Matrix Approximation 440
14.2.3 Imaginary Part of the Self-Energy 443
14.2.4 Real Part of the Self-Energy 444
14.2.5 The Dressed Green-Function. Comparison with Hubbard-I Approximation 446
14.2.6 Hartree–Fock Contribution to the Thermodynamic Potential 447
14.2.7 Engelbrecht–Randeria Mode 448
14.2.8 Discussion: The Possible Bridge Between Fermi-Gas and Gutzwiler Type of Expansions for Partially Filled Bands 448
14.3 The Search for Marginal Fermi Liquid Behavior in the Two-Band Models 449
14.3.1 Resistivity in the Two-Band Model with One Narrow Band 450
14.3.2 Evaluation of the Self-Energies at Low Temperatures in the Two-Band Model 450
14.3.3 Classical (Drude) Result for Resistivity at Low Temperatures 451
14.3.4 The Role of Umklapp Processes 452
14.3.5 The Regime of a Destroyed Heavy Band at High Temperatures $T > W_h^*$ 453
14.3.6 Evaluation of the Imaginary Parts of the Self-Energies at Higher Temperatures $W_h^* < T < W_L$ 454
14.3.7 Resistivity for $T > W_h^*$ in the 3D Case 455
14.3.8 Discussion 456
14.4 Weak-Localization Corrections in the 2D Case 457
14.4.1 Altshuler-Aronov Effect 458
14.4.2 Justification of the Expression for Localization Corrections in 2D with an Account of the Recoil Energy 459
14.4.3 Resistivity in the 2D Case: Maximum and Localization Tail 460
References 461

15 Nanoscale Phase Separation in Complex Magnetic Oxides 463
15.1 Inhomogeneous States and Nanoscale Phase Separation in Complex Magnetic oxides. Similarities with Cuprates 463
15.2 Crystal Structure: Electronic and Transport Properties of Manganites 465
15.2.1 Overall Phase-Diagram of Manganites 465
15.2.2 Resistivity at Optimal Concentrations 466
15.2.3 Colossal Magnetoresistance 467
15.2.4 Electronic Structure of Manganites 467
15.3 The Minimal Theoretical Model for Manganites 469
15.3.1 Homogeneous Canting for Small Densities 469
15.3.2 Canted State Instability 470
15.3.3 Small FM-Polarons Inside AFM-Matrix 471
15.3.4 Quantum Canting 473
15.3.5 Compromise Between Quantum Canting and Formation of FM-Polarons 473
15.4 Temperature Ferrons: FM-Polarons in a Layered Case 476
15.4.1 Temperature Ferrons 476
15.4.2 Polarons in a Layered Case 476
References 461
15.4.3 FM-Polarons on a Square-Lattice 478
15.4.4 FM-Polarons on a Triangular Lattice in 2D 478

15.5 Free and Bound Magnetic Polarons 479
15.5.1 The Minimal Model for the Bound Magnetic Polarons 479
15.5.2 The Variational Procedure 480
15.5.3 Magnetic Structure of a Bound Ferron 482
15.5.4 “Coated” Ferrons on the 2D Square Lattice 483
15.5.5 “Coated” Ferrons in the Continuum Limit 484
15.5.6 The Boundary Conditions in the Continuum Limit 484
15.5.7 Energy of a “Coated” Ferron on a Square Lattice 486
15.5.8 Generalized Mott Criterion 488

15.6 Phase Separation in Charge-Ordered Manganites 489
15.6.1 The Simplest Model for Charge Ordering 490
15.6.2 The Instability of the CO-State with Respect to Phase Separation ... 496
15.6.3 Nanoscale Phase Separation with Metallic Droplets Inside CO-Matrix ... 498
15.6.4 Phase Separation in the Extended Double Exchange Model (with nn Coulomb Interaction) 501

15.7 Orbital Ferrons .. 504
15.7.1 Two-Band Degenerate Hubbard Model 504
15.7.2 Heisenberg-Like Orbital Interaction 505
15.7.3 Orbital Ferrons in the Orbital t-J Model 506

15.8 Experimental Confirmation of the Gross Phase-Diagram and Phase Separation in Manganites 507
15.8.1 Experimental Confirmation of Nanoscale Phase Separation ... 507
15.8.2 Experiments on Large Scale Phase Separation: Formation of Stripes .. 508

References .. 509

16 Mesoscopic Transport Properties in the Phase-Separated Manganites ... 513
16.1 Mesoscopic Transport Properties in Strongly-Correlated Electron Systems .. 513
16.1.1 Transport Properties in Non-Metallic Phase-Separated Manganites ... 513
16.1.2 Tunneling Conductivity in the Phase-Separated Manganites ... 514
16.1.3 Tunneling Magnetoresistance in the Phase-Separated Manganites .. 519
16.2 1/f-Noise Power Spectrum .. 523
 16.2.1 Discussion. Comparison with Experiments 524
16.3 Experimental Confirmation of the Theoretical Predictions
 for Tunneling Conductivity 527
 16.3.1 Experiments on Tunneling Magnetoresistance 530
 16.3.2 Magnetic Susceptibility 533
 16.3.3 Discussion. The Triple Point in Manganites.
 Unresolved Questions 535
References .. 537

Conclusions .. 539

Index .. 541
Modern trends in Superconductivity and Superfluidity
Kagan, M.Y.
2013, XXIV, 550 p. 216 illus., Softcover
ISBN: 978-94-007-6960-1