Contents

1 Introduction ... 1
 1.1 Fracture Phenomena in Nature and Engineering 1
 1.2 Fracture Mechanics .. 5
 1.3 Computational Methods for Cracks 8
 1.4 Basic Literature on Fracture Mechanics 10

2 Classification of Fracture Processes 13
 2.1 Macroscopic Manifestations of Fracture 13
 2.2 Microscopic Appearances of Fracture 17
 2.3 Classification of Fracture Processes 18
 Reference ... 20

3 Basics of Fracture Mechanics 21
 3.1 Model Assumptions ... 21
 3.2 Linear-Elastic Fracture Mechanics 23
 3.2.1 Two-Dimensional Crack Problems 23
 3.2.2 Eigenfunctions of the Crack Problem 31
 3.2.3 Three-Dimensional Crack Problems 35
 3.2.4 Stress Intensity Factors: K-Concept 38
 3.2.5 Energy Balance During Crack Propagation 42
 3.2.6 The J-Integral 51
 3.2.7 Cracks in Anisotropic Elastic Bodies 54
 3.2.8 Interface Cracks 58
 3.2.9 Cracks in Plates and Shells 62
 3.2.10 Fracture Mechanical Weight Functions 65
 3.2.11 Thermal and Electric Fields 76
 3.3 Elastic-Plastic Fracture Mechanics 80
 3.3.1 Introduction ... 80
 3.3.2 Small Plastic Zones at the Crack 81
 3.3.3 The Dugdale Model 86
 3.3.4 Crack Tip Opening Displacement (CTOD) 87
 3.3.5 Failure Assessment Diagram (FAD) 89
 3.3.6 Crack Tip Fields 91

5 FE-Techniques for Crack Analysis in Linear-Elastic Structures

5.1 Interpreting the Numerical Solution at the Crack Tip

5.2 Special Finite Elements at the Crack Tip
 5.2.1 Development of Crack Tip Elements
 5.2.2 Modified Isoparametric Displacement Elements
 5.2.3 Computing Intensity Factors from Quarter-Point Elements

5.3 Hybrid Crack Tip Elements
 5.3.1 Development of Hybrid Crack Tip Elements
 5.3.2 2D Crack Tip Elements Based on Mixed Hybrid Model
 5.3.3 3D Crack Tip Elements Based on Hybrid Stress Model

5.4 Method of Global Energy Release Rate
 5.4.1 Realization Within FEA
 5.4.2 Method of Virtual Crack Extension

5.5 Method of Crack Closure Integral
 5.5.1 Basic Equations of Local Energy Method
 5.5.2 Numerical Implementation in FEA 2D
 5.5.3 Numerical Implementation in FEA 3D
 5.5.4 Consideration of Crack Face, Volume and Thermal Loading

5.6 FE-Computation of \(J \)-Contour Integrals

5.7 FE-Calculation of Fracture Mechanics Weight Functions
 5.7.1 Determination by Point Forces
 5.7.2 Determination of Parametric Influence Functions
 5.7.3 Derivation from Displacement Fields
 5.7.4 Application of the \(J \)-VCE-Technique
 5.7.5 Calculation by Means of the Bueckner-Singularity

5.8 Examples
 5.8.1 Tension Sheet with Internal Crack
 5.8.2 Semi-Elliptical Surface Crack Under Tension

References

6 Numerical Calculation of Generalized Energy Balance Integrals

6.1 Generalized Energy Balance Integrals

6.2 Extension to General Loading Cases
 6.2.1 Preconditions for Path-Independence
 6.2.2 Crack Face, Volume and Thermal Loading

6.3 Three-Dimensional Variants
 6.3.1 The 3D-Disk Integral
 6.3.2 Virtual Crack Propagation in 3D
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>Numerical Calculation as Equivalent Domain Integral</td>
<td>275</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Transformation into an Equivalent Domain Integral 2D</td>
<td>275</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Transformation into an Equivalent Domain Integral 3D</td>
<td>278</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Numerical Implementation</td>
<td>279</td>
</tr>
<tr>
<td>6.5</td>
<td>Consideration of Dynamic Processes</td>
<td>281</td>
</tr>
<tr>
<td>6.6</td>
<td>Extension to Inhomogeneous Structures</td>
<td>283</td>
</tr>
<tr>
<td>6.7</td>
<td>Treatment of Mixed-Mode-Crack Problems</td>
<td>285</td>
</tr>
<tr>
<td>6.7.1</td>
<td>Separation into Crack Opening Modes I and II</td>
<td>285</td>
</tr>
<tr>
<td>6.7.2</td>
<td>Interaction-Integral-Technique</td>
<td>288</td>
</tr>
<tr>
<td>6.8</td>
<td>Calculation of T-Stresses</td>
<td>291</td>
</tr>
<tr>
<td>6.9</td>
<td>Examples</td>
<td>294</td>
</tr>
<tr>
<td>6.9.1</td>
<td>Internal Crack Under Crack Face Loading</td>
<td>294</td>
</tr>
<tr>
<td>6.9.2</td>
<td>Edge Crack Under Thermal Shock</td>
<td>296</td>
</tr>
<tr>
<td>6.9.3</td>
<td>Dynamically Loaded Internal Crack</td>
<td>298</td>
</tr>
<tr>
<td>6.9.4</td>
<td>Crack in a Functionally Graded Material</td>
<td>300</td>
</tr>
<tr>
<td>6.10</td>
<td>Concluding Assessment of Methods</td>
<td>302</td>
</tr>
</tbody>
</table>

References | 303 |

7 | FE-Techniques for Crack Analysis in Elastic-Plastic Structures | 305 |
7.1	Elastic-Plastic Crack Tip Elements	305
7.2	Determination of Crack Tip Opening Displacements	308
7.3	Calculation of the J-Integral and its Meaning	309
7.3.1	Elastic-Plastic Extensions of J	309
7.3.2	Application to Stationary Cracks	314
7.3.3	Application to Moving Cracks	316
7.4	Examples	317
7.4.1	Compact-Tension Specimen	317
7.4.2	Tensile Plate with Surface Crack	321

References | 325 |

8 | Numerical Simulation of Crack Propagation | 327 |
8.1	Nodal Release Technique	328
8.2	Techniques of Element Modification	329
8.2.1	Element Splitting	329
8.2.2	Element Elimination Technique	331
8.2.3	Adapting Element Stiffness	332
8.3	Moving Crack Tip Elements	333
8.4	Adaptive Remeshing Strategies	335
8.4.1	Error-Controlled Adaptive Meshing	335
8.4.2	Simulation of Crack Propagation	336
8.5 Cohesive Zone Models .. 338
 8.5.1 Physical Background .. 338
 8.5.2 Numerical Realization 343
8.6 Damage Mechanical Models 345
8.7 Examples of Fatigue Crack Propagation 347
 8.7.1 Shear Force Bending Specimen 347
 8.7.2 ICE-Wheel Failure ... 349
8.8 Examples of Ductile Crack Propagation 351
 8.8.1 Cohesive Zone Model for CT-Specimen 351
 8.8.2 Damage Mechanics for SENB-Specimen 354
References ... 358

9 Practical Applications ... 361
 9.1 Fatigue Crack Growth in a Railway Wheel 361
 9.1.1 Material Data of Austempered Ductile Iron ADI 361
 9.1.2 Finite Element Calculation of the Wheel 362
 9.1.3 Specification of Crack Postulates 365
 9.1.4 Fracture Mechanical Analysis 366
 9.2 Brittle Fracture Assessment of a Container Under Impact Loading ... 373
 9.2.1 FE-Model of the Drop Test 373
 9.2.2 Fracture Mechanical Results of the Simulation 376
 9.2.3 Application of Submodel Technique 376
 9.3 Ductile Fracture of a Weldment in a Gas Pipeline 377
 9.3.1 Introduction ... 377
 9.3.2 Fracture Mechanics Assessment Concept FAD 378
 9.3.3 Large Scale Test of a Piping with Pre-cracked Weldments ... 382
 9.3.4 FE-Analysis of Large Scale Piping Test 386
References ... 389

Index ... 443
Finite Elements in Fracture Mechanics
Theory - Numerics - Applications
Kuna, M.
2013, XXV, 447 p. 277 illus., 201 illus. in color., Hardcover