Chapter 2
Squirrel Diffraction

Uwe Grimm and Michael Baake

Abstract The Thue–Morse system is a paradigm of singular continuous diffraction in one dimension. Here, we consider a planar generalisation, constructed by a bijective block substitution rule, which is locally equivalent to the squiral inflation rule. For balanced weights, its diffraction is purely singular continuous. The diffraction measure is a two-dimensional Riesz product that can be calculated explicitly.

2.1 Introduction

The diffraction of (fully) periodic systems and of aperiodic structures based on cut and project sets (or model sets) is well understood; see [4, 5] and references therein. These systems (in the case of model sets under suitable assumptions on the window) are pure point diffractive, and the diffraction can be calculated explicitly.

The picture changes for structures with continuous diffraction. Not much is known in general, in particular for the case of singular continuous diffraction, even though both absolutely and singular continuous diffraction show up in real systems [13, 14]. The paradigm of singular continuous diffraction is the Thue–Morse chain, which in its balanced form (constructed via the primitive inflation rule \(1 \mapsto \bar{1}, \bar{1} \mapsto 11\) with weights \(1\) and \(\bar{1} = -1\), say) shows purely singular continuous diffraction. This was shown by Kakutani [10], see also [1], and the result can be extended to an entire family of generalised Thue–Morse sequences [3].

Here, we describe a two-dimensional system which, in its balanced form, has purely singular continuous diffraction. For mathematical details, we refer to [6]. Again, it is possible to obtain an explicit formula for the diffraction measure in terms of a Riesz product [12, Sect. 1.3], with convergence in the vague topology.
2.2 The Squiral Block Inflation

The squiral tiling (a name that comprises ‘square’ and ‘spiral’) was introduced in [8, Fig. 10.1.4] as an example of an inflation tiling with prototiles comprising infinitely many edges. The inflation rule is shown in Fig. 2.1; it is compatible with reflection symmetry, so that the reflected prototile is inflated accordingly.

A patch of the tiling is shown in Fig. 2.2. Clearly, the tiling consists of a two-colouring of the square lattice, with each square comprising four squiral tiles of the same chirality. The two-colouring can be obtained by the simple block inflation rule shown in Fig. 2.3, which is bijective in the sense of [11]. Again, the rule is compatible with colour exchange. The corresponding hull has D_4 symmetry, and also contains an element with exact individual D_4 symmetry; see [6] for details and an illustration.

Due to the dihedral symmetry of the inflation tiling, it suffices to consider a tiling of the positive quadrant. Using the lower left point of the square as the reference point, the induced block inflation ρ produces a two-cycle of configurations v and
They satisfy, for all \(m, n \geq 0 \) and \(0 \leq r, s \leq 2 \), the fixed point equations

\[
(\rho v)_{3m+r,3n+s} = \begin{cases}
\bar{v}_{m,n}, & \text{if } r \equiv s \equiv 0 \text{ mod } 2, \\
v_{m,n}, & \text{otherwise.}
\end{cases}
\] (2.1)

2.3 Autocorrelation and Diffraction Measure

For a fixed point tiling under \(\rho^2 \), we mark each (coloured) square by a point at its lower left corner \(z \in \mathbb{Z}^2 \). For the balanced version, each point carries a weight \(w_z = 1 \) (for white) or \(w_z = \bar{1} = -1 \) (for grey). Consider the corresponding Dirac comb

\[
\omega = w\delta_{\mathbb{Z}^2} = \sum_{z \in \mathbb{Z}^2} w_z\delta_z,
\] (2.2)

which also is a special decoration of the original squiral tiling. Following the approach pioneered by Hof [9], the natural autocorrelation measure \(\gamma \) of \(\omega \) is defined as

\[
\gamma = \omega \ast \bar{\omega} := \lim_{N \to \infty} \frac{(\omega|_{C_N}) \ast (\bar{\omega}|_{C_N})}{(2N + 1)^2},
\] (2.3)

where \(C_N \) stands for the closed centred square of side length \(2N \). Here, \(\bar{\mu}(g) = \mu(\bar{g}) \) for \(g \in C_c(\mathbb{R}^2) \), with \(\bar{g}(x) := g(-x) \) (and where the bar denotes complex conjugation). The autocorrelation measure \(\gamma \) is of the form \(\gamma = \eta\delta_{\mathbb{Z}^2} \) with autocorrelation coefficients

\[
\eta(m,n) = \lim_{N \to \infty} \frac{1}{(2N + 1)^2} \sum_{k,\ell=-N}^N w_{k,\ell}w_{k-m,\ell-n}.
\] (2.4)

All limits exists due to the unique ergodicity of the underlying dynamical system [6], under the action of the group \(\mathbb{Z}^2 \).

Clearly, one has \(\eta(0,0) = 1 \), while Eq. (2.1) implies the nine recursion relations

\[
\begin{align*}
\eta(3m,3n) &= \eta(m,n), \\
\eta(3m,3n+1) &= -\frac{2}{9} \eta(m,n) + \frac{1}{3} \eta(m,n+1), \\
\eta(3m,3n+2) &= \frac{1}{3} \eta(m,n) - \frac{2}{9} \eta(m,n+1), \\
\eta(3m+1,3n) &= -\frac{2}{9} \eta(m,n) + \frac{1}{3} \eta(m+1,n), \\
\eta(3m+1,3n+1) &= -\frac{2}{9} (\eta(m+1,n) + \eta(m,n+1)) + \frac{1}{9} \eta(m+1,n+1).
\end{align*}
\] (2.5)
\[\eta(3m + 1, 3n + 2) = -\frac{2}{9}(\eta(m, n) + \eta(m + 1, n + 1)) + \frac{1}{9}\eta(m + 1, n), \]
\[\eta(3m + 2, 3n) = \frac{1}{3}\eta(m, n) - \frac{2}{9}\eta(m + 1, n), \]
\[\eta(3m + 2, 3n + 1) = -\frac{2}{9}(\eta(m, n) + \eta(m + 1, n + 1)) + \frac{1}{9}\eta(m, n + 1), \]
\[\eta(3m + 2, 3n + 2) = \frac{1}{9}\eta(m, n) - \frac{2}{9}(\eta(m + 1, n) + \eta(m + 1, n + 1)), \]

which hold for all \(m, n \in \mathbb{Z} \) and determine all coefficients uniquely [6]. The autocorrelation coefficients show a number of remarkable properties, which are interesting in their own right, and useful for explicit calculations.

Since the support of \(\omega \) is the lattice \(\mathbb{Z}^2 \), the diffraction measure \(\hat{\gamma} \) is \(\mathbb{Z}^2 \)-periodic [2], and can thus be written as

\[\hat{\gamma} = \mu \ast \delta_{\mathbb{Z}^2}, \]

where \(\mu \) is a positive measure on the fundamental domain \(\mathbb{T}^2 = [0, 1)^2 \) of \(\mathbb{Z}^2 \). One can now analyse \(\hat{\gamma} \) via the measure \(\mu \), which, via the Herglotz–Bochner theorem, is related to the autocorrelation coefficients by Fourier transform

\[\eta(k) = \int_{\mathbb{T}^2} e^{2\pi i k z} d\mu(z), \]

where \(k = (m, n) \in \mathbb{Z}^2 \) and \(kz \) denotes the scalar product. We now sketch how to determine the spectral type of \(\mu \), and how to calculate it.

Defining \(\Sigma(N) := \sum_{m,n=0}^{N-1} \eta(m, n)^2 \), the recursions (2.5) lead to the estimate

\[\Sigma(3N) \leq \frac{319}{81} \Sigma(N), \]

so that \(\Sigma(N)/N^2 \longrightarrow 0 \) as \(N \rightarrow \infty \). An application of Wiener’s criterion in its multidimensional version [6, 7] implies that \(\mu \), and hence also the diffraction measure \(\hat{\gamma} \), is continuous, which means that it comprises no Bragg peaks at all.

Since \(\eta(0, 1) = \eta(1, 0) = -1/3 \), which follows from Eq. (2.5) by a short calculation, the first recurrence relation implies that \(\eta(0, 3^j) = \eta(3^j, 0) = -1/3 \) for all integer \(j \geq 0 \). Consequently, the coefficients cannot vanish at infinity. Due to the linearity of the recursion relations, the Riemann–Lebesgue lemma implies [6] that \(\mu \) cannot have an absolutely continuous component (relative to Lebesgue measure).

The measure \(\mu \), and hence \(\hat{\gamma} \) as well, must thus be purely singular continuous.

2.4 Riesz Product Representation

Although the determination of the spectral type of \(\hat{\gamma} \) is based on an abstract argument, the recursion relations (2.5) hold the key to an explicit, iterative calculation of \(\mu \) (and hence \(\hat{\gamma} \)). One defines the distribution function \(F(x, y) := \)
μ([0, x] × [0, y]) for rectangles with 0 ≤ x, y < 1, which is then extended to the positive quadrant as

\[F(x, y) = \hat{\gamma}([0, x] \times [0, y]). \]

This can finally be extended to \(\mathbb{R}^2 \) via \(F(-x, y) = F(x, -y) = -F(x, y) \) and hence \(F(-x, -y) = F(x, 0) = 0 \), and \(F \) is continuous on \(\mathbb{R}^2 \). The latter property is non-trivial, and follows from the continuity of certain marginals; see [6] and references therein for details.

One can show that, as a result of Eq. (2.5), \(F \) satisfies the functional relation

\[F(x, y) = \frac{1}{9} \int_0^{3x} \int_0^{3y} \vartheta \left(\frac{x}{3}, \frac{y}{3} \right) dF(x, y), \tag{2.6} \]

written in Lebesgue–Stieltjes notation, with the trigonometric kernel function

\[\vartheta(x, y) = \frac{1}{9} (1 + 2 \cos(2\pi x) + 2 \cos(2\pi y) - 4 \cos(2\pi x) \cos(2\pi y))^2. \]

The functional relation (2.6) induces an iterative approximation of \(F \) as follows. Starting from \(F^{(0)}(x, y) = xy \) (which corresponds to Lebesgue measure, \(dF^{(0)} = \lambda \)) and continuing with the iteration

\[F^{(N+1)}(x, y) = \frac{1}{9} \int_0^{3x} \int_0^{3y} \vartheta \left(\frac{x}{3}, \frac{y}{3} \right) dF^{(N)}(x, y), \tag{2.7} \]

one obtains a uniformly (but not absolutely) converging sequence of distribution functions, each of which represents an absolutely continuous measure. With \(dF^{(N)}(x, y) = f^{(N)}(x, y) \, dx \, dy \), where \(f^{(N)}(x, y) = \frac{\partial^2}{\partial x \partial y} F^{(N)}(x, y) \), one finds the Riesz product

\[f^{(N)}(x, y) = \prod_{\ell=0}^{N-1} \vartheta(3^\ell x, 3^\ell y). \tag{2.8} \]
These functions of increasing ‘spikiness’ represent a sequence of (absolutely continuous) measures that converge to the singular continuous squiral diffraction measure in the vague topology. The case $N = 3$ is illustrated in Fig. 2.4. Local scaling properties can be derived from Eq. (2.8).

2.5 Summary and Outlook

The example of the squiral tiling demonstrates that the constructive approach of [1, 3, 10] can be extended to more than one dimension. The result is as expected, and analogous arguments apply to a large class of binary block substitutions that are bijective in the sense of [11]. This leads to a better understanding of binary systems with purely singular continuous diffraction.

It is desirable to extend this type of analysis to substitution systems with larger alphabets. Although the basic theory is developed in [12], there is a lack of concretely worked-out examples. Moreover, there are various open questions in this direction, including the (non-) existence of bijective constant-length substitutions with absolutely continuous spectrum (the celebrated example from [12, Ex. 9.3] was recently recognised to be inconclusive by Alan Bartlett and Boris Solomyak).

Acknowledgements We thank Tilmann Gneiting and Daniel Lenz for discussions. This work was supported by the German Research Council (DFG), within the CRC 701.

References

Aperiodic Crystals
Schmid, S.; Withers, R.L.; Lifshitz, R. (Eds.)
2013, XV, 286 p. 144 illus., 95 illus. in color., Hardcover
ISBN: 978-94-007-6430-9