1 Low-Order Harmonic Generation of Laser Radiation in Various Media

1.1 Nonlinear Crystals

1.1.1 Efficient Fifth Harmonic Generation

1.1.2 Laser Pulse Compression During Second Harmonic Generation in KDP

1.1.3 Parametric Waves Generation

1.2 Fullerene-Doped Polyimide Films, Fe- and Zn-Doped Polyvinylpyrrolidone, Colloidal Metals Solutions and Organic Dyes

1.3 Plasma and Ionic Media

1.3.1 Laser-Ablated Targets

1.3.2 Gallium Ion Beams

1.3.3 Generation of Backscattered 2ω and 3ω/2 Harmonics of Femtosecond Radiation from the Plasmas with Different Atomic Number

1.4 Gases

1.4.1 Third Harmonic Generation in Conditions of Negative and Positive Dispersion in Rare Gases and Tuneable Radiation Generation in 113.5–17.0 nm and 117.8–119.2 nm Ranges

1.4.2 Third Harmonic Generation in Air Using Femtosecond Radiation at Tight Focusing Conditions

1.4.3 Fourth Harmonic Generation During Parametric Four-Wave Mixing in the Filaments in Ambient Air

1.5 Low-Order Harmonic Generation During Interaction of Laser Radiation with Surfaces

1.5.1 Picosecond Radiation

1.5.2 Femtosecond Radiation

References
2 High-Order Harmonic Generation from Laser Ablation of Various Surfaces .. 43
2.1 Current Status of Plasma Harmonic Studies 45
2.2 Harmonic Generation of Picosecond Nd:YAG Laser Radiation in Ablation-Produced Plasmas 48
2.3 Stable Generation of High-Order Harmonics of Femtosecond Laser Radiation from Laser Produced Plasma Plumes at 1 kHz Pulse Repetition Rate 57
2.4 High-Order Harmonic Generation in Graphite Plasma Plumes Using Ultrashort Laser Pulses: A Systematic Analysis of Harmonic Radiation and Plasma Conditions 61
 2.4.1 HHG in Carbon Plasma at Different Conditions 63
 2.4.2 Characterization of Optimal Plasma Conditions 67
 2.4.3 Analysis of HHG and Plasma Characterization 72
2.5 Harmonic Generation in Fullerenes Using Few- and Multi-Cycle Pulses of Different Wavelengths 74
2.6 Isolated Sub-Femtosecond XUV Pulse Generation in Mn Plasma Ablation .. 79
References ... 85

3 Nonlinear Optical Refraction and Absorption of Media 89
3.1 Basic Relations and Experimental Methods and Schemes for Analysis of Nonlinear Optical Parameters of Media by the z-Scan Method .. 93
3.2 Crystals ... 98
 3.2.1 Photorefractive Crystals 98
 3.2.2 Nonlinear Crystals for Harmonics Generation 101
3.3 Fullerenes .. 104
3.4 Dyes .. 105
3.5 Metals ... 109
 3.5.1 Organometallic Structures 109
 3.5.2 Colloidal Metal Solutions 111
 3.5.3 Solid Dielectric Matrices Doped with Metals 112
3.6 Plasma ... 112
3.7 Liquids ... 117
 3.7.1 Calibration Measurements of Optical Nonlinearities Using a Standard Medium (Liquid Carbon Disulfide) 117
 3.7.2 Optical Nonlinearities of Carbon Disulfide at 795 nm 119
 3.7.3 Optical Nonlinearities of Carbon Disulfide at 1064 nm. .. 125
3.8 Measurements of Nonlinear Optical Parameters of Transparent and Nontransparent Materials Using Single-Shot Techniques ... 128
3.8.1 Single-Shot Reflection z-Scan for Measurements of the Nonlinear Refraction of Non-Transparent Materials ... 128
3.8.2 Single-Shot y-Scan for Characterization of the Nonlinear Optical Parameters of Transparent Materials 133
3.9 Optical Limiting in Various Media .. 138
3.9.1 Optical Limiting in Fullerenes .. 140
3.9.2 Optical Limiting in Colloidal Solutions 141
3.9.3 Optical Limiting in Semiconductors 143
References .. 145

4 Laser Ablation Induced Cluster Formation 151
4.1 Methods of Laser-Induced Nanoparticle Formation 151
4.2 Characterization of the Nanoparticles Synthesized During Laser Ablation of Indium and GaAs in Various Liquids 153
4.2.1 Structural and Optical Properties of Indium Nanoparticles Prepared by Laser Ablation in Liquids 153
4.2.2 Laser Ablation of GaAs in Liquids: Structural and Optical Characteristics of Colloidal Suspensions 156
4.3 Synthesis and Analysis of Nanostructured Thin Films Prepared by Laser Ablation of Metals in Vacuum 160
4.4 Characterization of Nanoparticles During Laser Ablation of Nanoparticle-Containing Targets 167
4.5 Nanoparticle Formation During Laser Ablation of Metals at Different Pressures of Surrounding Noble Gases 171
References .. 179

5 Low-Order Nonlinear Optical Characterization of Clusters . . . 181
5.1 Nonlinear Optical Properties of Indium and Gallium Arsenide Nanoparticles Prepared by Laser Ablation in Liquids .. 184
5.2 Low-Order Optical Nonlinearities of Silver Clusters 192
5.2.1 Low-Order Nonlinearities of Silver Nanoparticles Embedded in Solid Transparent Matrices 192
5.2.2 Characterization of Optical and Nonlinear Optical Properties of Silver Nanoparticles Prepared by Laser Ablation in Various Liquids 203
5.2.3 Role of Aggregation in Variations of Nonlinear Optical Parameters of Silver Nanoparticle Suspensions 210
5.3 Influence of Laser Ablation Parameters on the Optical and Nonlinear Optical Characteristics of Colloidal Suspensions of Semiconductor Nanoparticles 213
5.4 Studies of Low-Order Nonlinear Optical Properties of BaTiO₃ and SrTiO₃ Nanoparticles .. 219
References ... 225

6 Applications of Nanoparticle-Containing Plasmas for High-Order Harmonic Generation of Laser Radiation 231
6.1 Experimental Arrangements for Cluster-Containing Plasma Formation and High-Order Harmonic Generation 232
6.2 High-Order Harmonic Generation in the Plasmas Containing In-Situ Produced Nanoparticles and Fullerenes 233
6.3 Application of Silver Nanoparticle-Containing Laser Plasmas for HHG ... 235
 6.3.1 Harmonic Generation of Laser Radiation in the Plasma Plumes Containing Large-Sized Silver Nanoparticles 235
6.4 Improvements in High-Order Harmonic Generation from Silver Nanoparticles ... 239
References ... 243
Nonlinear Optical Properties of Materials
Ganeev, R.A.
2013, XV, 244 p., Hardcover
ISBN: 978-94-007-6021-9