1 Concepts of Soil

1.1 Different People Have Different Concepts of Soil

1.2 There Are Many Different Definitions of Soil

1.3 All Loose Materials on the Surface of the Earth Are Not Soils

1.4 Soil Is Not Land Itself; It Is a Part of Land

1.5 Soil Is a Natural Body

1.6 Soil Is a Three-Dimensional Body

1.7 Soil Is a Dynamic Body

1.8 Soil Is a Transformer of Energy

1.9 Soil Is a Recycler of Materials

1.10 Soil Is a Purifier of Water

1.11 Soil Is an Ecosystem

1.12 Soil Is a Component of the Environment

1.13 Major Components of Soils Vary in Volume Proportions

1.14 Soil Is a Medium of Plant Growth

Study Questions

References

2 Soil as a Part of the Lithosphere

2.1 Lithosphere Is the Outermost Part of the Earth

2.2 Lithosphere Interacts with Atmosphere, Hydrosphere, and Biosphere to Form the Pedosphere

2.3 Eight Chemical Elements Constitute the Bulk of the Earth’s Crust

2.4 Chemical Elements in the Earth’s Crust Form Minerals Under Natural Conditions

2.5 Silicate Minerals Are Important Rock and Soil Constituents

2.6 Some Other Minerals Are Also Abundant in Soil

2.7 A Few Minerals Constitute the Bulk of the Earth’s Crust

2.8 Rocks Are Aggregates of Minerals

2.9 Igneous Rocks Are Formed by Solidification of Magma and Lava

2.10 Sedimentary Rocks Are Mainly Formed by Lithification of Sediments

2.11 Metamorphic Rocks Are Formed from Preexisting Rocks by Change in Solid State

2.12 Sedimentary Rocks Predominate in the Earth’s Surface While Igneous Rocks in the Crust

2.13 Soil Characteristics Differ on Rock and Mineral Sources

2.14 Weathering Is the Disintegration and Decomposition of Rocks and Minerals

2.14.1 Thermal Weathering Is Caused by Variation in Temperature

2.14.2 Mechanical Weathering Is Caused by Water, Glacier, Wind, and Organisms

2.14.3 Chemical Weathering Brings Chemical Changes in Rocks and Minerals
3 Factors and Processes of Soil Formation

3.1 A Soil Profile May Be Differentiated into Several Horizons

3.1.1 There May Be Subordinate Distinctions of Master Horizons

3.2 Soil-Forming Factors Are Framed in the Fundamental Soil-Forming Equation

3.3 Soil Formation Depends on the Interaction of Soil-Forming Factors

3.4 There Are Diverse Effects of Climate on Soil Formation

3.4.1 Pedoclimate May Be More Important than Atmospheric Climate

3.4.2 Climate Changes with Time

3.5 Organisms Provide Organic Inputs and Biochemical Transformations

3.5.1 Human Affects Soil Formation

3.6 Parent Material Provides Raw Materials for Soil Development

3.6.1 Parent Materials Are Diverse in Origin and Characteristics

3.6.2 Mineral Parent Materials May Be Residual or Transported

3.7 Relief Is the Configuration of Land Surface

3.8 Soil Grows and Matures with Time

3.9 Basic Soil-Forming Processes Operate in the Formation of All Soils

3.9.1 Additions Are the Inputs of Materials and Energy in Soil

3.9.2 Soil Materials Are Removed by Physical, Chemical, and Biological processes

3.9.3 Transformations in Soil Are Physical, Chemical, and Biological in Nature

3.9.4 Materials in Soil Are Translocated in All Directions

3.10 Specific Soil-Forming Processes Produce Specific Soils

3.10.1 Laterization and Latosolization Occur Mainly in Humid Tropics

3.10.2 Ferralitization Is a Result of Strong Weathering in Tropical Climate

3.10.3 Podzolization Is the Accumulation of Clay and Humus in Subsoil Under Humid Climate

3.10.4 Calcification Is the Enrichment of Lime in Soil Profiles

3.10.5 Salinization and Desalinization Are Processes of Salt Accumulation and Removal, Respectively

3.10.6 Mottling and Gleization Occur Through Redox Transformations

Study Questions

References
4.7.1 Alfisols Are Well-Developed Soils with High Base Status 35
4.7.2 Andisols Are Soils with Andic (Volcanic Ash) Properties 36
4.7.3 Aridisols Are Soils of Drylands ... 36
4.7.4 Entisols Are Young Soils That Lack Horizon Development 37
4.7.5 Gelisols Are Soils of the Cold Zone ... 38
4.7.6 Histosols Are Soils Developed from Organic Soil Materials 38
4.7.7 Inceptisols Are Soils That Show Beginning of Horizon Differentiation ... 39
4.7.8 Mollisols Are Soils of the Grasslands ... 39
4.7.9 Oxisols Are Highly Weathered Tropical Soils with Enrichment of Kaolinite and Oxides of Fe, Al, and Mn 40
4.7.10 Spodosols Are Soils with Accumulation of Amorphous Mixtures of Organic Matter and Aluminum in B Horizon 41
4.7.11 Ultisols Are Low Base Status Soils with an Argillic or a Kandic Horizon .. 41
4.7.12 Vertisols Are Soils That Crack Deeply and Widely Upon Drying ... 42
4.8 FAO/UNESCO Soil Classification Is Now World Reference Base for Soil Resources ... 42
4.8.1 Correlation of Reference Soil Groups of WRB with Soil Taxonomy ... 47

Study Questions ... 48

References .. 48

5 Physical Properties of Soil ... 49

5.1 Soil Has Varied Colors .. 49

5.2 Soils Are Composed of Variously Sized Mineral Particles 50

5.2.1 Soil Particles Are Classified According to Size .. 50
5.2.2 Close Packing of Soil Particles Creates Some Degree of Fineness or Coarseness Known as Soil Texture ... 50
5.2.3 There Are 12 Soil Textural Classes ... 51
5.2.4 Soil Texture Regulates Soil Behavior ... 51
5.2.5 Crop Plants Need Favorable Soil Textures .. 52
5.2.6 Soil Texture Is Not Easily Altered ... 52
5.3 Soil Structure Is the Arrangement of Soil Particles .. 52

5.3.1 Classes of Soil Structure Are Based on Size of Aggregates 53
5.3.2 Grades of Soil Structure Refer to Stability of Peds 53
5.3.3 Formation of Soil Structure Results from Complex Processes 53
5.3.4 “Soil Structure Is the Key to Soil Fertility” .. 55
5.3.5 Unlike Soil Texture, Soil Structure May Readily Be Altered 55
5.3.6 Puddling Is the Process of Destruction of Soil Structure 55
5.4 Density Is the Mass Per Unit Volume .. 56
5.5 Pores Are Void Spaces Between Soil Particles and Aggregates 56

5.5.1 Percentage of Soil Volume Occupied by Pores Is Known as Porosity 57
5.5.2 Anything That Affects Bulk Density Also Affects Porosity 57
5.6 Consistence Is Resistance of Soil to Deformation Under Pressure 58
5.7 Soils Get Warmth Mainly from Solar Radiation ... 58

5.7.1 Heat Capacity of Unit Mass Is Known as Specific Heat 59
5.7.2 Soil Components Differ in Thermal Conductivity and Diffusivity 59
5.7.3 Reflectivity of Incident Radiation Is Called Albedo 59
5.7.4 Environment and Soil Conditions Affect Soil Temperature 60
5.7.5 Soil Temperature Is Related to Air Temperature 61
5.7.6 Soil Temperature Regulates Soil Processes and Plant Growth 61
6.19 Irrigation Water Requirement Includes Crop Water Requirement and Others ... 78
6.19.1 Crop Water Use Efficiency ... 79
6.19.2 Full Irrigation .. 79
6.19.3 Deficit Irrigation .. 79
6.20 Choice of Irrigation Methods Depends on Crop Types and Farm Facilities ... 79
6.20.1 Surface Irrigation .. 80
6.20.2 Uncontrolled Flooding .. 80
6.20.3 Controlled Flooding .. 80
6.20.4 Sprinkler Irrigation .. 81
6.20.5 Drip Irrigation ... 82
6.20.6 Subsurface Irrigation ... 82
6.21 Irrigation Water Should Be of Proper Quality ... 82
6.22 Over Irrigation Is Harmful .. 84
6.23 Waterlogging Is Undesirable for Most Crops ... 84
6.24 Drainage May Be Natural or Artificial ... 84
6.25 Some Land Needs Artificial Drainage .. 85
6.25.1 There Are Many Artificial Drainage Systems 85

Study Questions ... 87
References.. 87

7 Soil Organic Matter ... 89
7.1 Soil Organic Matter Is a Vital Component of Soil .. 89
7.2 There Are Three Categories of Soil Organic Matter 89
7.3 Composition of Soil Organic Matter Is Variable .. 90
7.4 Many Factors Affect Soil Organic Matter Content.. 90
7.5 Soil Organic Matter Performs Many Physical, Chemical, and Biological Functions ... 91
7.6 Humification Is a Complex Process of Decomposition and Resynthesis ... 92
7.7 Managing Soil Organic Matter Is Necessary for Sustainable Soil Fertility ... 93
7.8 Carbon–Nitrogen Ratio Is an Important Index of SOM Decomposition ... 94
7.9 SOM Fractions Represent Different Ages and Rates of Turnover 94
7.10 Soil Organic Matter Contributes to Carbon Sequestration ... 95

Study Questions ... 95
References.. 95

8 Chemical Properties of Soil ... 97
8.1 Soils Are Composed of Chemical Elements ... 97
8.2 Water in Soil with Dissolved Substances Forms Soil Solution....................... 97
8.3 Soil Colloids Are Very Fine Soil Particles... 98
8.3.1 Inorganic Soil Colloids Mainly Include Aluminosilicate Clay Minerals ... 98
8.3.2 Organic Colloids Are Derivatives of Humus 99
8.3.3 Soil Colloids Have Unique Properties .. 99
8.3.4 There Are Electric Charges on Soil Colloids 100
8.4 The Soil Is a Seat of Diverse Chemical Reactions .. 101
8.4.1 The Equilibrium Constant Represents the Solubility Product in Dissolution Reactions ... 101
8.4.2 Chelation Is the Complexation of Metals with Organic Substances ... 102
8.4.3 Precipitation Is the Separation of Substances from Solution 102
8.4.4 Adsorption Is the Attraction of Gas, Liquid, or Solid on Surfaces of Colloids ... 102
10.2.6 Magnesium Is a Constituent of Chlorophyll and Activator of Many Enzymes ... 132
10.2.7 Iron Acts in Electron Transfer in Plant Body ... 133
10.2.8 Manganese Acts in Nitrate Assimilation, Hill Reaction, and Electron Transfer ... 133
10.2.9 Copper Is a Structural Element in Regulatory Proteins and a Cofactor of Many Enzymes ... 133
10.2.10 Molybdenum Regulates Nitrogen Metabolism in Plants ... 134
10.2.11 Boron Contributes to Cell Wall Development and Cell Division ... 134
10.2.12 Zinc Is a Constituent of All Six Classes of Enzymes ... 135
10.2.13 Chlorine Controls Stomatal Opening and Internal Water Balance ... 135
10.2.14 Nickel Is a Component of a Number of Enzymes ... 136
10.3 There Are Positive and Negative Interactions of Nutrients in Plant ... 136
10.4 Plants Absorb 14 Nutrients from the Soil ... 137
10.4.1 Soils Should Supply Adequate Nutrients to Plants for Optimum Growth ... 137
10.4.2 Nutrients in Soil May Be Available or Unavailable to Plants ... 137
10.5 Nitrogen Remains Mainly in the Organic Form in Soil ... 138
10.5.1 Nitrate Leaching from Soils Causes Groundwater Contamination ... 138
10.5.2 Soil Is a Source of Atmospheric Nitrogen Oxides ... 138
10.6 Phosphorus Is an Element of Agronomic and Environmental Significance ... 139
10.6.1 Three Major Phosphorus Pools in Soil Include Solution and Active and Fixed Phosphorus ... 139
10.6.2 Inorganic Phosphorus Is One Major Fraction of Soil Phosphorus ... 139
10.6.3 Organic Phosphorus Is Another Major Fraction ... 140
10.6.4 Availability of Phosphorus in Soil Is Governed by Its Chemical Environment ... 140
10.6.5 Phosphorus Availability Is Judged from Its Chemical Extractability ... 140
10.6.6 Inorganic Phosphorus in Soil Undergoes Precipitation–Dissolution Reactions ... 141
10.6.7 Phosphate Sorption–Desorption Regulates Phosphorus Availability in Soil ... 141
10.6.8 Soil Phosphorus May Affect Water Quality ... 142
10.7 Sulfur in Soils Come from Mineral and Organic Matter ... 142
10.8 Potassium in Soil Remains in Soluble, Exchangeable, Fixed, and Mineral-Bound Forms ... 142
10.9 Calcium in Soil Is Both a Nutrient and a Soil Conditioner ... 143
10.10 Magnesium Behaves Similarly to Calcium in Soil ... 143
10.11 Iron Is a Micronutrient and a Marker of Soil Genesis ... 143
10.12 Manganese Is an Active Redox Reactant in Soil ... 144
10.13 Weathered, Leached, and Acid Soils Have Relatively Low Copper Levels ... 144
10.14 Fine-Textured Soils Generally Contain More Zinc Than Sandy Soils ... 144
10.15 Molybdenum Availability Increases with Increasing Soil pH ... 145
10.16 Tourmaline Is the Main Mineral Source of Boron in Soil ... 145
10.17 Chloride Is the Most Mobile Anion in Soils ... 145
10.18 Soils Around Industries Contain the Highest Nickel ... 145
10.19 Nutrients Interact in Soils ... 145
10.20 Any Material That Provides Crops with a Nutrient Is a Fertilizer 146
 10.20.1 Industrial Fertilizers Are Synthetic Products 146
 10.20.2 Organic Fertilizers Are Natural Materials 150

10.21 Determining the Kind and Dose of Fertilizer Is Called Fertility Evaluation .. 151
 10.21.1 Visual Symptoms May Indicate Nutrient Deficiency and Toxicity .. 152
 10.21.2 Tissue Test Indicates Nutrient Status in Plants 152
 10.21.3 Soil Test Is an Efficient Tool of Fertility Evaluation 154
 10.21.4 Pot Experiments Are Closely Observed Small-Scale Fertilizer Trials .. 155
 10.21.5 Field Trials Are Large-Scale Fertilizer Experiments 155

10.22 Fertilizer Application Methods Depend on Crops and Fertilizers 156

Study Questions ... 157
References ... 157

11 Problem Soils and Their Management ... 161
 11.1 Problem Soils Have Limitations to Cultivation ... 161
 11.2 Dryland Soils Need Sustainable Management for Food Security 161
 11.2.1 Aridity and Salinity Are the Problems of Dryland Soils 161
 11.2.2 Some Crops Are Suitable for Drylands ... 162
 11.2.3 Supplemental Irrigation Reduces the Risk of Crop Failure 162
 11.2.4 Mulching Reduces Evaporation Loss of Soil Water 163
 11.3 Steep Soils Should Be Left Under Natural Condition 163
 11.4 Low Water Retention Capacity and Low Fertility Are the Problems of Sandy Soils ... 164
 11.5 Deep and Wide Cracks and Undesirable Consistence Are the Problems of Vertisols .. 164
 11.6 Acid Soils Need Liming and Acid-Tolerant Crops 165
 11.6.1 Liming Increases Soil pH ... 166
 11.7 Acid Sulfate Soils Need Liming and Soil Washing 168
 11.7.1 Applying Lime .. 169
 11.8 Saline and Sodic Soils Are Common in Arid and Coastal Regions 169
 11.8.1 Saline Soils Accumulate Natural Salts .. 169
 11.8.2 Sodic Soils Have High Exchangeable Sodium 170
 11.8.3 Saline–Sodic Soils Are Both Saline and Sodic 172
 11.9 Peat May Be Productive, but Reclaiming Peat Soil Is Risky 172

Study Questions ... 173
References ... 173

12 Soil Resources and Soil Degradation ... 175
 12.1 Soil Is a Natural Resource .. 175
 12.1.1 There Are Nine Land Quality Classes ... 176
 12.2 Soil Degradation Is the Exhaustion of Soil’s Potential to Serve Desired Function .. 176
 12.2.1 There Are Five Main Types of Soil Degradation 176
 12.2.2 Soil Degradation May Be Due to Natural and Anthropogenic Causes .. 176
 12.3 Physical Degradation of Soil Includes Compaction, Surface Sealing, and Erosion .. 178
 12.3.1 Soil Compaction Is the Consolidation Under Pressure 178
 12.3.2 Desertification Occurs Mainly in Arid and Semi-arid Regions 181
 12.3.3 Soil Erosion Is the Detachment and Transport of Soil Particles 182
 12.3.4 There Are Vegetative and Engineering Methods of Erosion Control .. 187
14.8 Forest Soils Develop Through Different Processes 235
14.9 Different Forest Ecosystems Have Different Soils 235
 14.9.1 Oxisols and Ultisols Are Typical Tropical Forest Soils 236
 14.9.2 Alfisols and Spodosols Are Typical Temperate Forest Soils 236
 14.9.3 Gelisols Are the Typical Boreal Forest Soils 237
14.10 There Is a Long History of Plantation Forestry .. 237
14.11 Major Plantation Tree Species Vary with Regions 238
14.12 Forest Trees Have Their Own Soil Requirement .. 238
14.13 Forest Plantations Influence Soil Properties ... 239
14.14 Agroforestry Involves Growing Trees and Crops Together 240
 14.14.1 Alley Cropping ... 241
 14.14.2 Silvopasture ... 241
14.15 Deforestation Causes Environmental Degradation 241
14.16 Shifting Cultivation Enhances Soil Erosion ... 242
14.17 Nutrient Cycling Maintains Productivity in Forest Ecosystems 243
 14.17.1 Nutrient Cycling Involves Pools and Fluxes 243
 14.17.2 Nutrient Recycling Is a Part of the Nutrient Cycling 244
14.18 Forests and Forest Soils Are Important Carbon Sequesters 247

Study Questions ... 248
References .. 249

15 Climate Change and Soil ... 253
15.1 Weather Is a Short-Term and Climate Is a Long-Term Phenomenon 253
15.2 Climate Has Significant Effect on Crop and Soil Management 253
15.3 Climate Is Changing ... 254
 15.3.1 Climate Change Would Lead to Global Warming 254
 15.3.2 Arctic Sea Ice Would Melt Away .. 254
 15.3.3 Rising Sea Level Would Affect Coastal Environments 254
 15.3.4 Hurricanes, Floods, and Droughts Would Be More Frequent 255
15.4 Properties and Functions of Soil Would Change in Response to Climate Change ... 255
 15.4.1 Increased CO₂ May Enhance Biomass Production 256
 15.4.2 Climate Change May Lead to Enhanced Decomposition of Soil Organic Matter .. 256
 15.4.3 Climate Change Would Increase Evapotranspiration 256
 15.4.4 Climate Change Would Make Many Soils Saline 257
 15.4.5 Climate Change Would Alter Composition and Functions of Soil Microorganisms ... 257
 15.4.6 Temperature Rise May Lead to Permafrost Thawing 257
15.5 Global Circulation Models Predict Future Climate and Its Impact 259
15.6 Soil Management Should Also Aim at Mitigating Climate Change and Adapting to It ... 259

Study Questions ... 260
References .. 260

Index ... 263
Soils
Principles, Properties and Management
Osman, K.T.
2013, XXII, 274 p., Hardcover